

1. Newton's Second Law of Motion.
1.1 Motion of particles.

The general formula of Newton's scone law of motion can be written as.

$$
\sum F=m \cdot a
$$

which say that the resultant of all external forces acting on a particle of mass (m) is must equal to multiply of the mass (m) and the acceleration of the particle (a).

* Rectilinear Coordinates. y

For this type of motion, the equationofmotion can be writtenas;

$$
\begin{aligned}
& \sum F_{x}=m \cdot a_{x} \\
& \sum F_{y}=m \cdot a_{y}
\end{aligned}
$$

* Normal and Tangential Coordinates.

For this type of motion,
the equation of motion (Newton's second law can be applied in the tangential and normal direaction), Can be writtenas;

Example:
For the (8.05I6) particle determine
a_{0} the tension (T) in the Card.
b. the angular acceleration of the particle.

solution:

$$
z
$$

$$
{ }^{20} \mathrm{fes}_{\mathrm{ps}} .
$$

$$
\begin{aligned}
& \omega=\frac{v}{r}=\frac{20}{5}=\overline{4} \text { rad } f \text { secs } C
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \sum F_{n}=m a_{n} \Rightarrow T \omega \cos 36.869^{\circ}=m a_{n} \\
& T(8.05)\left(\cos 36.869^{\circ}\right)=(8.05 / 32.2) * 80 \\
& \therefore T=26.44 \mathrm{Ib} . \\
& \Rightarrow \sum F_{T}=m, a_{r} \Rightarrow 8.05 \sin 36.869^{\circ}=(8.05 / 32.2) a_{T} \\
& \because a_{T}=19.32 f_{p s}^{2} \\
& \Rightarrow \quad \therefore \quad a_{T}=\alpha \cdots r \\
& 19.32=\alpha *(5) \\
& \Rightarrow \alpha=19.32 / 5 \\
& =3.864 \mathrm{rad} / \mathrm{sec}^{2} \square
\end{aligned}
$$

1.2 General plane Motion of a Rigid Burly.

Consider the rigid Body in the figure, which is subjected to general plane notion caused by the external forces and moments system.

With considering the x and y coordinates system, the three equations of motion becomes;

$$
\begin{aligned}
& \sum F_{x}=m \cdot\left(a_{G}\right)_{x} \\
& \sum F_{y}=m \cdot\left(a_{G}\right) y \\
& \sum M_{G}=I_{G \cdot} \alpha
\end{aligned}
$$

In general, it may be convenient to sum moments... about some point (P) other than (G). Then the equations of motion become;

$$
\begin{aligned}
& \sum F_{x}=m\left(a_{G}\right) x \\
& \sum F_{y}=m\left(a_{G}\right) y \\
& \sum M_{p}=\sum\left(m_{k}\right)_{p} .
\end{aligned}
$$

Example:
The 20 kg slender rod show in the figure, is vorating in the vertical plane, and at the instant shown it has an angular velocity of $\omega=5 \mathrm{rad} / \mathrm{sec}$. Determine the rod's angular acceleration and the horizontal and vertical Components of reaction at the pin at this instant. Solution:

$$
\begin{aligned}
& \pm \sum F_{n}=m \cdot a_{n} \\
& \Rightarrow Q_{n}=m_{0} \omega^{2} \cdot r_{a} \\
& \Rightarrow O_{n}=(20)(5)^{2} \cdot(1.5) \\
& +\dot{\Sigma} F_{T}=m \cdot a_{r} \\
& =m \cdot \alpha \cdot r_{a} \\
& \Rightarrow(-0)+2 \cdot(9.8)=(2
\end{aligned}
$$

$$
\begin{aligned}
& K D F B O
\end{aligned}
$$

by solving $O_{n}=750 \mathrm{~N}, O_{T}=19 \mathrm{~N}$, and $\alpha=5.9 \mathrm{rad} / \mathrm{s}^{2}$ $O R$

$$
\begin{aligned}
& \Rightarrow \sum M_{0}=\sum\left(M_{k}\right)_{0} \\
& \Rightarrow{ }^{6}+(20)(9.81)(1.5)=\frac{1}{12(20)(3)^{2} \alpha+(20)(1.5)(1.5) \alpha} \\
& \left.\Rightarrow \alpha=5.9 \mathrm{rad} / \mathrm{s}^{2}\right) \\
&
\end{aligned}
$$

2. Secand-Order Ordinary Differential Equations.
2.1 Homsogenous Equation $(f(t)=0)$

Take the equation;

$$
\frac{d^{2} x}{d t^{2}}+a_{1} \cdot \frac{d x}{d t}+a_{2} x=0
$$

let $(d / d t)=S$;
\Rightarrow the above equation be come

$$
\begin{aligned}
& \quad s^{2} x+a_{1} s x+a_{2} x=0 \\
& \therefore \quad s^{2}+a_{1} s+a_{2}=0 \\
& \therefore S_{1,2}=\frac{-\left(a_{1}\right) \mp \sqrt{ }\left(a_{1}\right)^{2}-4 a_{2}}{2}
\end{aligned}
$$

Now, $*$ if $s_{1}=s_{2}^{2}=S$ (Real and equal roots)
\Rightarrow the solution is $x(t)=(A+B t) e^{s t}$

* If $S_{1} \neq S_{2}$. (Real and different roots)
\Rightarrow the solution is $x(t)=A \cdot e^{s_{1} t}+B \cdot e^{s_{2} t}$
* If S_{1} and S_{2} are an imaginary roots.

$$
S_{1}=x \text { and } s_{2}=\beta
$$

\Rightarrow the solution is $x(t)=e^{\alpha t}(A \sin \beta t+B \cos \beta t)$.
But if the equation in the form;
$* \frac{d^{2} x}{d t^{2}}+n^{2} x=0 \Rightarrow$ the solution is $x(t)=A \cos n t+B \sin n t$
$* \frac{d^{2} x}{d t^{2}}-n^{2} x=0 \Rightarrow$ the solution is $x(t)=A \cdot \cosh n t+B \sinh n t$
Example: Solve $4 \frac{d^{2} x}{d t^{2}} 7^{8} \frac{d x}{d t}+7 x=0$
Solution: $4 s^{2}-85+7=0 \Rightarrow S_{1,2}=\frac{-(-8) \mp \sqrt{(-8)^{2}-(4)(4)(7)}}{(2)(4)}$

$$
\begin{aligned}
& \Rightarrow S_{1} \cdot 2=1 \mp 1(\sqrt{3} / 2) \Rightarrow \alpha=1 \quad, \beta \in \sqrt{3} / 2 \\
& \Rightarrow x(t)=e^{\alpha t}(A \cos \beta t+B \sin \beta t)=e^{t}\left(A \cos \frac{\sqrt{3}}{2}+B \sin \frac{\sqrt{3}}{2}\right)
\end{aligned}
$$

* Syllabus:

CH. 1: Oscillatory Motion.
CFF. 2: Free Tibration.
CF. 3: Harmonically - Excited Vibration.
CF. 4: Traņient Vibration.

CH. 6: Multi Degree Of Freedom.

*References:

By: W. T . Thomson . 1972.

Theory of Vibration With Application. Third Edition.
By: W. T. Thomson . 1988.
Mechanical Vibrations. Third Edition.
By : RAO . 1995.

Introduction:

There are two general classes of vibrations - free and forced. Free vibration takes place when a system oscillates under the action of forces inherent in the system itself, and when external impressed forces are absent. The system under free vibration will vibrate at one or more of its natural frequencies, which are properties of the dynamic system established by its mass and stiffness distribution.

Vibration that takes place under the excitation of external forces is called forced vibration. When the excitation is oscillatory, the system is forced to vibrate at the excitation frequency. If the frequency of excitation coincides with one of the natural frequencies of the system, a condition of resonance is encountered, and dangerously large oscillations may result. The failure of major structures such as bridges, buildings, or airplane wings is an awesome possibility under resonance. Thus, the calculation of the natural frequencies of major importance in the study of vibrations.

Vibrating systems are all subject to damping to some degree because energy is dissipated by friction and other resistances. If the damping is small, it has very little influence on the natural frequencies of the system, and hence the calculation for the natural frequencies are generally made on the basis of no damping. On the other hand, damping is of great importance in limiting the amplitude of oscillation at resonance.

The number of independent coordinates required to describe the motion of a system is called degrees of freedom of the system. Thus, a free particle undergoing general motion in space will have three degrees of freedom, and a rigid body will have six degrees of freedom, i.e., three components of position and three angles defining its orientation. Furthermore, a continuous elastic body will require an infinite number of coordinates (three for each point on the body) to describe its motion; hence, its degrees of freedom must be infinite. However, in many cases, parts of such bodies may be assumed to be rigid, and the system may be considered to be dynamically equivalent to one having finite degrees of freedom. In fact, a surprisingly large number of vibration problems can be treated with sufficient accuracy by reducing the system to one having a few degrees of freedom.

Chapter One

Harmonic Motion

Oscillatory motion may repeat itself regularly, as in the balance wheel of a watch, or display considerable irregularity, as in earthquakes. When the motion is repeated in equal intervals of time T, it is called period motion. The repetition time t is called the period of the oscillation, and its reciprocal, $f=1 / 5$, is called the frequency. If the motion is designated by the time function $\mathrm{x}(\mathrm{t})$, then any periodic motion must satisfy the relationship

$$
x(t)=x(t+\tau) .
$$

Harmonic motion is often represented as the projection on a straight line of a point that is moving on a circle at constant speed, as shown in Fig. 1. With the angular speed of the line o-p designated by w, the displacement x can be written as
$x=A \sin \omega t$

Figure (1) Harmonic Motion as a Projection of a Point Moving on a Circle
The quantity w is generally measured in radians per second, and is referred to as the angular frequency. Because the motion repeats itself in 2 p radians, we have the relationship

$$
\begin{equation*}
\omega=\frac{2 \pi}{\tau}=2 \pi f \tag{2}
\end{equation*}
$$

where t and f are the period and frequency of the harmonic motion, usually measured in seconds and cycles per second, respectively.

The velocity and acceleration of harmonic motion can be simply determined by differentiation of Eq. 1 .

Using the dot notation for the derivative, we obtain.

$$
\begin{align*}
& \dot{x}=\alpha A \cos \alpha t=\omega A \sin (\omega t t / 2) \tag{3}\\
& \ddot{x}=-\omega^{2} A \sin \omega^{2} t=\alpha^{2} A \sin (\alpha+\pi) \tag{4}
\end{align*}
$$

* The angular frequarey (natural):-

$$
\omega_{n}=\sqrt{\frac{k}{m}}
$$

$K:$ Constant inf stiffness (N / m). m:- mass of body (kg)

Example:- The system show in Fig. It is attached to spring pulled 20 cm to the right and released at $t=0$. The total oscilliationsistan 10. soc
Determine:-
(1) The period of oscillation
(2) Natural frequency

$$
c \tau=? \quad \tau=\frac{\text { total time }}{\text { total oscillition }}=\frac{10}{15}=\frac{2}{3} \mathrm{see}
$$

(2) $f=\frac{1}{C}=\frac{1}{2 / 3}=\frac{3}{2}=1.55^{-1}$ or Hz
(3)

$$
\alpha(t)=A \cdot \sin (\omega t+\varnothing)
$$

at $t=0 \quad X_{0}=20 \times 10^{-2} \mathrm{~m}$ rubin equal

$$
\begin{align*}
& x(0)=A \cdot \sin \varnothing \Rightarrow 20 * 10^{-2}=A \cdot \sin \varnothing \\
& x^{0}(t)=A \cdot \omega \cdot \cos (\omega t+\varnothing)-2
\end{align*}
$$

at $t=0 \quad X^{0}=0$

$$
\begin{aligned}
\text { at } t & =0 \quad x=0 \\
0 & =A \cdot \omega \cdot \cos \varnothing \Rightarrow A \cdot \omega \neq 0 \therefore \cos \phi=0 \Rightarrow \phi=\frac{\pi}{2} \\
\therefore 20 \times 10^{-2} & =A+1 \Rightarrow A
\end{aligned}
$$

$$
\begin{aligned}
& 20 \times 10^{-2}=A * \left\lvert\, \Rightarrow 2010^{-2}+\frac{2 \pi}{2 / 3}=1.88 \mathrm{~m} / \mathrm{sec} .\right. \\
& *^{0}(+)=20 .
\end{aligned}
$$

Example: For the torsional system shown in figure, the weight of the disc is $(193.2 I b),(1=31.4 \mathrm{in})(B=2 \mathrm{in})$ and $(R=4 \mathrm{in})$. If the natural frequency is $(87.2 H, B)$, determine the shear factor of the shaft. $K=20 \mathrm{lb} / \mathrm{in}$ solution:

* For the shaft.

$$
\frac{T}{J}=\frac{G \cdot \theta}{L} \Rightarrow T=\frac{G_{1} \cdot I}{L}
$$

$\therefore K_{r}=\frac{G \cdot J}{L}$ and $w_{n}=\frac{2 \pi}{\tau}=2 \pi \cdot f$

$$
\therefore w_{n}=547.894
$$

* For the disc.

All above data be substited in the angular frequency equation to get; $G=20.399 * 10^{7} \mathrm{Iblin} \mathrm{lin}^{2}$.

$$
\begin{aligned}
& +{ }_{\square} \sum M_{G}=I \stackrel{B}{\circ} \\
& \Rightarrow-T-K \cdot x \cdot R=I \ddot{\theta} \quad \text {, But } x=R \theta \\
& -k_{T} \theta-k R^{2} \theta=I \ddot{\theta} \\
& \theta^{\infty}+\left(\frac{k_{T}+k R^{2}}{I}\right) \theta=0 \\
& \therefore \omega_{n}=\left(\frac{k_{T}+K R^{2}}{I}\right)^{1 / 2}=\left(\frac{G \cdot J+k \cdot R^{2} \cdot L}{L \cdot I}\right)^{1 / 2}=547.894 \mathrm{rad} / \mathrm{s} \\
& \text { assume } k=20^{\circ} \mathrm{Ib} / \mathrm{in} \\
& I=\frac{1}{2} m R^{2}=\frac{1}{2}\left(\frac{193.2}{32.2 \times 12}\right)(4)^{2}=4 \text { Ibm } \text { in }^{2} \\
& J=\frac{1}{2} \pi r^{4}=\frac{1}{2} \cdot \Pi \cdot(1)^{4}=\pi / 2 C \quad \text { or } J=\frac{\pi}{3.2} D^{4}
\end{aligned}
$$

Engineering college
mechanic Denarment
Fourth Stage VIBRATIO
For the free vibration of undamped system, the enowby is partly kinetic and partly potential. An the conservative system the total energy (kinetic + potential) is constant and its rate of change is zero, So the energy method can be used to derive the equation of motion as follows:

$$
\begin{aligned}
& T+U=\text { Constant } \\
& T_{1}+U_{1}=T_{2}+U_{2}
\end{aligned}
$$

and $\frac{d}{d t}(T+U)=0$

* If the system is under going harmonic motion, then

$$
\operatorname{In} a x=U_{\max }
$$

Example:
Determine the natural frequency of the torsional pendulum where (k) torsional s stiffness ($\frac{N \cdot m}{\text { rad }}$) and (I) mass moment of inertia (Nom. ${ }^{2}$).

Solution:

1. By Energy Method

-

$$
\text { - } \frac{1}{4} \overline{0} \dot{B}_{n}=\text { Ii } w_{n}
$$

$$
\begin{aligned}
& T+U=\text { constant } \\
& \frac{1}{2} I \theta^{2}+\frac{1}{2} k \theta^{2}=C \quad J_{* 2} \\
& I \theta^{\prime 2}+k \theta^{2}=2 C
\end{aligned}
$$

differentiating w.r.t. time.

$$
\begin{aligned}
& I \cdot 2 \dot{\theta} \dot{\theta}+k \cdot 2 \theta \dot{\theta}=0 \\
& I \ddot{\theta}^{\prime}+k \theta=0 \\
& \ddot{\theta}+\frac{k}{I} \theta=0 \Rightarrow \omega_{n}^{2}=\frac{k}{I}
\end{aligned}
$$

2. By simple torsion theory

$$
\begin{aligned}
& \sum M=I \ddot{\theta} \\
& \Rightarrow I \ddot{\theta}=-k \theta \\
& I \ddot{\theta}+k \theta=0 \Rightarrow \ddot{\theta}+\frac{k}{I} \theta=0 \Rightarrow \omega_{n}^{2}=\frac{k}{I}
\end{aligned}
$$

Example:
Find the natural frequency and equation of motion for the system as shown:-

Solution:

$$
\begin{aligned}
& T+U=C \\
& \frac{1}{2} m \dot{x}^{2}+\frac{1}{2} k x^{2}=c
\end{aligned}
$$

By drivitive
$2 * \frac{1}{2} m \cdot \dot{x} \cdot \ddot{x}+\frac{1}{2} * 2 \cdot k \cdot x \cdot x=0$

$$
m \ddot{x}+k x=0 \Rightarrow \ddot{x}+\frac{k}{m} x=0 \Rightarrow w_{n}^{2}=\frac{k}{m}
$$

(3) The mass of the rod as ashown is 5 mall compared to the mass attached to it. For small oscillation, calculate the natural frequency of the swing of the mass. Assume $I_{0}=m \cdot L^{2}$

Solution:

$$
\begin{aligned}
& \sum M_{0}=I \dot{\theta} \\
& \Rightarrow-m g \sin \theta \cdot L-K X \cdot a
\end{aligned}
$$

恠

$$
\text { But } \sin \theta=\theta ; \quad \text { (Smal loscillation) }
$$

$$
\begin{aligned}
& =L^{2}-m g \cdot \theta * L-K \cdot \theta+a=m \cdot L^{2} \\
\Rightarrow & m L^{2} \theta^{2}+\left(m g L+k a^{2}\right) \theta=0 \\
\therefore & \omega_{n}=\left(\frac{m g L+k a^{2}}{m L^{2}}\right)^{1 /} \Rightarrow f_{n}=\frac{w_{n}}{2 \pi}
\end{aligned}
$$

* By Energy Method:

$$
\begin{aligned}
& T=\frac{1}{2} I \dot{\theta}^{2} \text { (KE af mass) } \\
& U=U_{\text {weight }}+U_{\text {spring }} \\
& =m \cdot g \cdot h+\frac{1}{2} k x^{2} \\
& =m g(L-L \cos \theta)+\frac{1}{2} k(a \theta)^{2} \\
& \therefore \frac{d}{d t}(T+U)=0 \\
& \Rightarrow \frac{1}{2} I \cdot 2 \dot{\theta} \ddot{\theta}+m g(0-L(-\sin \theta) \dot{\theta})+\frac{1}{2} k a^{2} \cdot 2 \theta \dot{\theta}=0 \\
& \Rightarrow m L^{2} \dot{\theta}+m g L \theta+k a^{2} \theta=0 \\
& \therefore \theta \dot{\theta}+\frac{m g L+k a^{2}}{m L^{2}} \theta=0 \\
& \omega_{n}=\left(\frac{m g L+k a^{2}}{m L^{2}}\right)^{1 / 2} \\
& f_{n}=\frac{\omega_{n}}{2 \pi}=\frac{1}{2 \pi}\left(\frac{m g L+k a^{2}}{m L^{2}}\right)^{1 / 2}
\end{aligned}
$$

(4) Determine the natural frequency of the spring-mass-pulley as shown below.

Solution:

* For ness (in).

$$
\begin{equation*}
\sum F_{y}=m \ddot{x} \Rightarrow-T=m \ddot{x} \tag{1}
\end{equation*}
$$

* Fir paley (M).

$$
\sum M_{0}=I \ddot{\theta} \Rightarrow \operatorname{Tr}-k \cdot r^{2} \theta=I \ddot{\theta}
$$

where $I=\frac{1}{2} M r^{2} \Rightarrow T i r-k \cdot r^{2} \theta=\frac{1}{2} M \cdot r^{2} \cdot \ddot{\theta}$
From Equation (1) $T=-m \ddot{x}$

$$
\Rightarrow-m \ddot{x} r-k r^{2} \theta=\frac{1}{2} m r^{2} \theta^{0}
$$

But \qquad

$$
x=r o
$$

$$
\Rightarrow \frac{1}{2} M r^{2} \ddot{\theta}+m r^{2} \ddot{\theta}^{\circ}+k r^{2} \theta=0
$$

$$
\Rightarrow\left(\frac{1}{2} M+m\right) \dot{\theta}+k \theta=0 \Rightarrow \therefore \omega_{n}=\left(\frac{k}{\left(\frac{1}{2} M+m\right)}\right)^{1 / 2}
$$

* By Energy Method.
$T=K \cdot E \cdot$ of the mass (linear) $+K . E$ of the pulley (Angular)

$$
\begin{aligned}
& m=\frac{1}{2} \dot{x}^{2}+\frac{1}{2} I \dot{\theta}^{2}=\frac{1}{2} M r^{2} \dot{\theta}^{2}+\frac{1}{2} I \dot{\theta}^{2} \\
& U=p \cdot E \text { of the spring }=\frac{1}{2} k x^{2}=\frac{1}{2} k r^{2} 0^{2} \\
& \frac{d}{d t}(T+O)=0 \\
& \Rightarrow \quad \frac{1}{2} M r^{2}-2 \dot{\theta} \ddot{\theta}+\frac{1}{2} I \cdot 2 \dot{\theta} \ddot{\theta}+\frac{1}{2} k r^{2} \cdot 2 \theta \dot{\theta}=0 \\
& m r^{2} \dot{\theta}^{\dot{\theta}}+\frac{1}{2} M r^{2} \dot{\theta}^{\dot{\theta}}+k r^{2} \theta=0 \\
& \left(m+\frac{1}{2} M\right) r^{2} \theta_{0}^{0}+k r^{2} \theta=0 \quad J \div r^{2} \\
& \left(m+\frac{1}{2} M\right) \theta^{\infty}+k \Theta=0 \\
& \Rightarrow \quad \sigma^{0 .}+\left(\frac{k}{m+\frac{1}{2} M}\right) \theta=0 \\
& \therefore \omega_{n}=\left(\frac{k}{m+\frac{1}{2} M}\right)^{1 / 2} ; f_{n}=\frac{1}{2 \pi}\left(\frac{k}{m+\frac{1}{2} M}\right)^{1 / 2} .
\end{aligned}
$$

In general: the kinetic energy of any system is divided into: 1. Linear $\Rightarrow T=\frac{1}{2} m x^{2}$
2. Rotational $\Rightarrow T=\frac{1}{2} I \theta^{2}$ and Can be written as

1. $T=\frac{1}{2} m_{\text {eff }} x^{-2}$
2. $\left.T=\frac{1}{2} I_{\text {eff }} \theta^{-2}\right\}$ for Compile System

Example: Let a mas (m) having a translational Velocity x° be coupled to aristher mass (of mass moment of inertia J_{0}) having aritational sicced θ° as shows, in Figure Determine the effective mass for the systems.
Sol:-

$$
\begin{aligned}
& T_{\text {Rack }}=\frac{1}{2} m x^{0} \\
& T_{p}=\frac{1}{2} J^{2}
\end{aligned}
$$

$$
\frac{1}{2} m_{e f f} x^{02}=\frac{1}{2} m \cdot x^{02}+\frac{1}{2} J_{0} \theta^{0}
$$

$$
\begin{aligned}
& \therefore \frac{1}{2} \text { meff } \not x^{2 / 2}=\frac{1}{2} m x^{0} x^{\prime}+\frac{1}{2} J_{0}\left(\frac{x^{2}}{R^{2}}\right) . \\
& \cdots \text { eff }=\left(m \pm \frac{J_{0}}{R^{2}}\right): \& A N S
\end{aligned}
$$

* Effective Stiffness.
-The potential energy 'in any system Can be divided into;
$\therefore 60 \%$ potential energy in the spring $U=\frac{1}{2} k x^{2} \sim \sim$
: 2 . potential energy from the falling of the mass
$\therefore=w \cdot h=m g h$
Where h : the hight.
An Complex system, the total potential energy;

$$
U=\frac{1}{2} k_{\text {eff }} x^{2}
$$

Example: Determincithe effectiof stiffens of the say tam? Solution:
-The potential energy of the system

$$
0=\frac{1}{2} k_{\text {eff }} x^{2}
$$

But the total potential energy is; ;1- k_{2}

$$
U_{a c t}=\frac{1}{2} k_{1} x^{2}+\frac{1}{2} k_{2} x_{2}^{2}
$$

sOothe potential energy must beafunction of (x), than

$$
\begin{aligned}
U_{\text {act }} & =\frac{1}{2} k_{1} x^{2}+\frac{1}{2} k_{2}\left(\frac{a}{b} x\right)^{2} \\
& =\frac{1}{2}\left(k_{1}+\frac{a^{2}}{b^{2}} k_{2}\right) x^{2}, \\
& =\frac{1}{2} k_{e f f} x^{2} \\
\therefore \quad k_{\text {eff }} & =k_{1}+\frac{a^{2}}{b^{2}} k_{2} \quad a x_{2}
\end{aligned}
$$

- Stiffness and Flexibility.

The stiffness can be defind as the force required to achive a unity displacement in a certain direction.

$$
\because F=k \cdot x \Rightarrow k=F / x
$$

There is a combination, in some systems, at several linear springs. These springs can be combined into an equivalent single spring as explained below;

1. Spring in parallel.

The spring constant of the equivalent spring is the sum of the spring constants of the springs (added forces withequa? displacements).

$$
\begin{array}{ll}
\because F=F_{1}+F_{2}+\cdots+F_{n} \\
\Rightarrow & F=k_{1} x+k_{2} x+\cdots+k_{n} x \quad \\
\therefore \quad & k_{1}=k_{1}+k_{2}+\cdots+k_{n}=k_{e q} \quad k_{2}=k_{1}+k_{2}+\cdots+k_{n} \|
\end{array}
$$

2. spring in Series.

The spring constant of the equivalent spring is (ad de.? ed displacements with equal forces).

$$
\begin{aligned}
& \therefore x=x_{1}+x_{2}+\cdots+x_{n} \\
&=\left(F / k_{1}\right)+\left(F / k_{2}\right)+\cdots+\left(F / k_{n}\right) \\
& \Rightarrow \quad \frac{x}{F}=\frac{1}{k_{1}}+\frac{1}{k_{2}}+\cdots+\frac{1}{k_{n}}=\frac{1}{k_{e q}} \\
&\left\|\frac{1}{k_{e q}}=\frac{-1}{k_{1}^{\prime}}+\frac{+}{k_{2}}+\cdots+\frac{1}{k_{n}}\right\|
\end{aligned}
$$

* The flexibility is defined as the inverse of the stiffness.

$$
\left\|\alpha=\frac{1}{k}=\frac{x}{F}\right\|
$$

Example: Determine the spring stiffness for the system of springs.
(I)

$$
\begin{aligned}
& F=F_{1}=F_{2} \\
& x=x_{1}+x_{2}
\end{aligned}
$$

But $k=\frac{F}{x^{\prime}} \Rightarrow x=\frac{F}{k}$
$\therefore \frac{F}{k}=\frac{F_{1}}{k_{1}}+\frac{F_{2}}{k_{2}}$
$\Rightarrow \quad \frac{F}{k}=F\left(\frac{1}{k_{1}}+\frac{1}{k_{2}}\right)$

$$
\Rightarrow \quad k=\left(k_{1} * k_{2}\right) /\left(k_{1}+k_{2}\right)
$$

(2)

$$
F_{1}=k_{1} x_{1}, \quad F_{2}=k_{2} x_{2}
$$

$$
F_{0}=k_{0} \cdot x_{0}, k_{0}=?
$$

$$
\mu_{2}=0
$$

$$
F_{1} \cdot(a+b)=F_{0} \cdot b \Rightarrow F_{1}=\frac{b}{a+b} F_{0}
$$

$$
\sum M_{1}=0
$$

$$
F_{2}(a+b)=F_{0} a \Rightarrow F_{2}=\frac{a}{a+b} F_{0}
$$

$$
x_{1}=\frac{F_{1}}{k_{1}}=\frac{b F_{0}}{(a+b) k_{1}}=\frac{b}{a+b} \cdot \frac{F_{0}}{k_{1}}
$$

$$
x_{2}=\frac{F_{2}}{k_{2}}=\frac{a F_{0}}{(a+b) k_{2}}=\frac{a}{a+b} \cdot \frac{F_{0}}{k_{2}}
$$

$$
\begin{aligned}
& \frac{x_{0}-x_{1}}{a}=\frac{x_{2}-x_{0}}{b} \\
& \frac{1}{a}\left[\frac{F_{0}}{k_{0}}-\frac{b}{a+b} \cdot \frac{F_{0}}{k_{1}}\right]=\frac{1}{b}\left[\frac{a}{a+b} \cdot \frac{F_{0}}{k_{2}}-\frac{F_{0}}{k_{0}}\right] \\
& k_{0}=\frac{(a+b)^{2}}{\frac{a^{2}}{k^{2}}+\frac{b^{2}}{k_{1}}}
\end{aligned}
$$

* Spesial core, $a=b \Rightarrow k_{0}=\frac{4 k_{1} k_{2}}{k_{1}+k_{2}}$

Note/ Try to solve it by energy method

> (3) $F_{1}=k_{1} x, F_{2}=k_{2} x, F_{0}=k_{\text {ep p }} x$
> $\because F_{0}=F_{1}+F_{2} \Rightarrow k_{\text {eg }} \cdot x=k_{1} x+k_{2} x$
> $\Rightarrow k_{\text {eq }}=k_{1}+k_{2}$
or.

$$
\begin{aligned}
& \because U=\frac{1}{2} k x \\
& \therefore U=\frac{1}{2} k_{1} x_{1}^{2}+\frac{1}{2} k_{2} x_{2}^{2}
\end{aligned}
$$

But $x=x_{1}=x_{2}$
$\therefore U=\frac{1}{2}\left(k_{1}+k_{2}\right) x^{2}$
$\therefore \quad k_{\text {eq }}=k_{1}+k_{2}$

Viscously Damped Free Vibration

Viscous damping force is expressed by the equation

$$
\begin{equation*}
F_{d}=c \dot{x} \tag{1}
\end{equation*}
$$

where c is a constant of proportionality.
Symbolically. it is designated by a dashpot, as shown in Figure 1. From the free body diagram, the equation of motion is. seen to be

$$
\begin{equation*}
m \ddot{x}+c \dot{x}+k x=F(t) \tag{2}
\end{equation*}
$$

The solution of this equation has two parts. If $F(t)=0$, we have the homogeneous differential equation whose solution corresponds physically to that of free-damped vibration. With $F(t)=0$, we obtain the particular solution that is due to the excitation irrespective of the homogeneous solution. We will first examine the homogeneous equation that will give us some understanding of the role of damping.

Figure 1 Viscously Damped Free Vibration
With the homogeneous equation :

$$
\begin{equation*}
m \ddot{x}+c \dot{x}+k x=0 \tag{3}
\end{equation*}
$$

the traditional approach is to assume a solution of the form :

$$
\begin{equation*}
x=e^{s t} \tag{4}
\end{equation*}
$$

Where s is a constant. Upon substitution into the differential equation, we obtain :
$\left(m s^{2}+c s+k\right) e^{s t}=0$
Which is satisfied for all values of t when
$s^{2}+\frac{c}{m} s+\frac{k}{m}=0$
Equation (5), which is known as the characteristic equation, has two roots :
$s_{1,2}=-\frac{c}{2 m} \pm \sqrt{\left(\frac{c}{2 m}\right)^{2}-\frac{k}{m}}$
Hence, the general solution is given by the equation:
(x) $=A e^{s_{1} t}+B e^{s_{2} t}$

Where A and B are constants to be evaluated from the initial conditions $x(0)$ and
$\dot{x}(0)$. Equation (6) substituted into (7) gives :
$x=e^{-(c / 2 m) t}\left(A e^{\left(\sqrt{(c / 2 m)^{2}-k j m}\right)}+B e^{-\left(\sqrt{(c / 2 m)^{2}-k m}\right) t}\right) \quad \ldots . .(8) \quad \int_{0}$
The first term, $e^{-(\varsigma / 2 m) t}$, is simply an exponentially decaying function of time. The behavior of the terms in the parentheses, however, depends on whether the numerical value within the radical is positive, zero, or negative.

When the damping term $(\mathrm{c} / 2 \mathrm{~m}) 2$ is larger than k / m, the exponents in the previous equation are real numbers and no oscillations are possible, We refer to this case as over damped.

When the damping term $(\mathrm{c} / 2 \mathrm{~m})^{2}$ is less than k / m, the exponent becomes an imaginary number, $\pm i \sqrt{k / m-(c / 2 m)^{2}} t$. Because

$$
e^{ \pm\left(\sqrt{k j m-(c / 2 m)^{\gamma}}\right)}=\cos \sqrt{\frac{k}{m}-\left(\frac{c}{2 m}\right)^{2}} t \pm i \sin \sqrt{\frac{k}{m}-\left(\frac{c}{2 m}\right)^{2} t}
$$

The terms of Equation (8) within the parentheses are oscillatory. We refer to this case as under damped.

In the limiting case between the oscillatory and non oscillatory motion $(c / 2 m)^{2}=k / m$, and the radical is zero. The damping corresponding to this case is called critical damping, cc.

$$
\begin{equation*}
c_{c}=2 m \sqrt{\frac{k}{m}}=2 m \omega_{n}=2 \sqrt{k m} \tag{9}
\end{equation*}
$$

Any damping can then be expressed in terms of the critical damping by a non dimensional number ζ, called the damping ratio:

$$
\begin{equation*}
s^{\kappa}=\frac{c}{c_{c}} \tag{10}
\end{equation*}
$$

and
$\frac{c}{2 m}=s\left(\frac{c_{c}}{2 m}\right)=s^{c} \omega_{n}$

ज3
(i) Oscillatory Motion ($\zeta<1.0$) Under damped Case :
$x=e^{-\zeta \omega_{n} t}\left(A e^{i\left(\sqrt{1-\zeta^{2}}\right) o_{n} t}+B e^{\left.-\left(\sqrt{1-\zeta^{2}}\right) a d\right)}\right.$......(12)
The frequency of damped oscillation (damped natural frequency) is equal to :
$\omega_{d}=\frac{2 \pi}{\frac{\pi}{d}}=\omega_{n} \sqrt{1-\xi^{2}}$
In this case the square root of $\left(\zeta^{2}-1\right)$ is a imaginary number and can be written as $\left(\pm \zeta^{2}-1\right)$. Such a system is called an under damping system and will vibrate when released.

Figure 2. shows the general nature of the oscillatory motion.

Figure 2. Damped Oscillation $\zeta<1$

(ii) Non oscillatory Motion $(\zeta>1.0)$ Overdamped Case : $x=A e^{\left(-\zeta+\sqrt{\zeta^{2}-1}\right) 0_{n} z^{2}}+B e^{\left(-\zeta-\sqrt{\zeta^{2}-1}\right) x_{n}{ }^{2}}$

The motion is an exponentially decreasing function of time as shown in Figure 3.

Figure 3. A periodic Motion $\zeta>1$
In this case the square root of $\left(\zeta^{2}-1\right)$ is a real number and equation (12) indicates that the displacement will vary exponentially with time. There will be no oscillatory motion - no vibration. This is known as an overdamping system.
(iii) Critically Damped Motion $(\zeta=1.0)$:

This is known as a critically damped system, and represents the case where the system is just non-oscillatory. The displacement gradually returns to its initial value, with no vibration. It can be shown that the solution in this case is:
$x=(A+B t) e^{-\omega_{n} t}$
Figure 4. shows three types of response with initial displacement $x(0)$.

Figure 4. Critically Damped Motion $\zeta=1$
Ki

* To summaries, if $\zeta>1$, the system is heavily damped, and no vibration occurs. If $\zeta=1$, the system is critically damped, and the damping is only just sufficient to prevent vibration. If $\zeta^{\mu \mu}<1$, as it is in the majority of cases, there is in sufficient damping in the. system to prevent vibration and the motion is oscillatory.

Logarithmic Decrement

The rate at which the amplitude decays gives us another measurement of the damping in a system, known as the Logarithmic Decrement, δ. This is defined as the natural logarithm of the ratio of any two successive amplitudes. In general, we have vibration at a frequency $\omega_{d}=\omega_{n} \sqrt{1-\zeta^{2}}$, so the time for one cycle is $T=2 \pi / \omega_{d}=2 \pi / \omega_{n} \sqrt{1-\zeta^{2}}$. The amplitude of the vibration is $x e^{-\zeta v_{u}{ }^{\prime}} \cdot$

Let $\delta=$ Logarithmic Decrement $\delta=\ln x_{1} / x_{2}$
Where : x_{1} and x_{2} are two successive amplitudes.

$$
\delta=\zeta \omega_{n} \tau_{d} \quad, \quad \tau_{d}=\frac{2 \pi}{\omega_{n}} \sqrt{1-\zeta^{2}}, \quad \delta=\frac{2 \pi \zeta}{\sqrt{1-\zeta^{2}}} .
$$

$$
\begin{equation*}
\Rightarrow \quad 0=\mathbb{X}(3.6 \cos \phi-(0.86) \sin \phi) \tag{2}
\end{equation*}
$$

\therefore From $(2), 3.6 \cos \phi=4.8 \sin \phi$
becoucs does not equal 0 .
$\therefore \tan \phi=\frac{3.6}{4.8}=0.75 \Rightarrow \phi=36.9^{\circ}=0.644 \mathrm{rdd}$.
putting this value for ϕ in $(1) \Rightarrow I=\frac{0.01}{\sin 36.9^{\circ}}=0.017 \mathrm{~m}$.
The displacement is, there fore.

$$
\begin{aligned}
x & =\pi e^{-8 \omega_{n} t} \sin \left(\omega_{d} t+\phi\right) \\
& =0.017 e^{-4.8 t} \sin (3.6 t+0.644)
\end{aligned}
$$

The amplitude of the response is given by the exponential term

$$
\bar{X} e^{-8 \omega_{n} t}=\left(0.017 e^{-4.8 t}\right)
$$

So, if the amplitude is $1 \mathrm{~mm}=0.001 \mathrm{~m}$ then,

$$
\begin{array}{l|l}
0.001=0.017 e^{-4.8 t} \\
\therefore e^{-4.8 t}=\frac{0.001}{0.017}=0.0588 & \left\lvert\, \begin{array}{l}
\delta=\ln \frac{x_{1}}{x_{2}}=1 \times \frac{0.017}{0.001} \\
\delta=2.8333 \\
\delta=\delta, \omega_{n} . \sigma_{d} \Rightarrow \pi=\frac{28733}{4.8}
\end{array}\right.
\end{array}
$$

Taking the natural \log of b th sides of this equation, $\mathcal{\alpha}$

$$
\begin{aligned}
& -4.8 t=\ln (0.0 .588)=-2.836 \\
& \Rightarrow t=0.59 \mathrm{sec}
\end{aligned}
$$

The amplitude will become less than 1 mm , therefore, after 0.59 seconds only.

$x=\bar{X} \cdot e^{-j \omega_{n} t} \mid$

Examples: (1) Determine the value of the natural frequency and thic damping ratio for the simple spring-mass-dashpot system shown. (2) IF the mass is released from rest at a distance $(10 \mathrm{~mm})$ to the right of the equilibriumposition. Determine the dis placement as a function of time, and es timate how long it will take for the amplitude of the motion to be reduced to less than $(1 \mathrm{~mm})$. solution: Jiver
(1)

Sothemass will oscillate if given an initial displacement and released, but the motion will be damped out quite quickly, since f is not much less than (1).
(2) Since $\varepsilon<1$, the system is underdamped. The solution to the equation of motion is therefor given by equation

$$
x=\bar{X} e^{-i \omega_{n} t} \sin \left(\omega_{0} t+\phi\right)
$$

Where the damped frequency $\omega_{d}=\omega_{n} \sqrt{1-r^{2}}$
The initial conditions are that at $t=0, x=10 \mathrm{~mm}=0.01 \mathrm{~m}$ and $\dot{x}^{\dot{\prime}}=0$,

$$
\because w_{n}=6 \mathrm{rad} \mathrm{sec}^{-1} \Rightarrow w_{d}=6+\sqrt{1-0 . \varepsilon^{2}}=3.6 \mathrm{rad} \mathrm{sec}^{-1}
$$

Differentiating with respect to time, we find that,

$$
x^{\circ}=\frac{\bar{x}}{0}\left[\omega_{d} e^{-\omega_{n} t} \cos \left(\omega_{d} t+\phi\right)-\varepsilon \omega_{n} e^{-\omega_{n} t} \sin \left(\omega_{d}(t+\phi)\right]\right.
$$

So putting in the initial conditions:

For $x: \quad 0=\mathbb{X}\left[\omega_{d} \cos \phi-\varepsilon \omega_{n} \sin \phi\right]$

$$
\begin{aligned}
& \therefore \omega_{n}=(\mathrm{k} / \mathrm{m})^{1 / 2}=(9012.5)=6 \mathrm{rad} \mathrm{~s}^{-1} \\
& \varepsilon=(c /(2 \sqrt{k m}))=2.4 /(2 \times \sqrt{90 \times 2.5}) \\
& =0.8
\end{aligned}
$$

Example: A rod is hinged at one end and supported by a spring of stiffness "k" at the other end. Amass of" " m ". is attached at "I /3" length from the hinge and a dashpot having a damping Coefficient " C " is attached " $2 / 3$ " of length from the hinge. Find the equivalent mass and damping crocefficient at the spring and derive an expression for the fraquincy of the damped free vibrations of the system. us shown
solution:
Neglecting the mass of the rod, spring and dashpot,

$$
I_{A}=m a^{2}
$$

let x be the instant-teneous
 displacement of end B

$$
* \text { Note } / I_{A}=\text { m. } a^{2}
$$

Then restoring force exerted by

$$
=k x
$$

Restoring moment about A

$$
=k x * 3 a
$$

velocity of dashpot. $\frac{2}{3} \frac{d x}{d t}$
\therefore damping force $=c \cdot \frac{2}{3} \frac{d x}{d t}$
damping moment a bout $A=c * \frac{2}{3} \frac{d x}{d t}+2 a=\frac{4}{3} a c \frac{d x}{d t}$
Angular a cceleration of rod about $A=\left(\frac{d^{2} x}{d t^{2}}\right) / 3 a$.
The equation of motion of the rad:

$$
\frac{m a^{2}}{3 a}\left(\frac{d^{2} x}{d t^{2}}\right)+4 a c \frac{d x}{d t}+3 a k x=0
$$

dividing through by 3 a gives.

$$
\frac{m}{c}\left(\frac{d^{2} x}{d t^{2}}\right)+\frac{4 c}{a} \frac{d x}{d t}+k x=0
$$

\therefore equivalent mass at spring $=\frac{m}{9}$ and equivalent damping coefficient at spring $=\frac{4 c}{a}$
$\therefore \omega_{n}^{2}=\frac{k}{m}$ generally \Rightarrow for this system $\omega_{n}^{2}=\frac{q k}{m}$.
and generally $\delta=\frac{e}{2 \sqrt{k m}}$;
for this system $\Rightarrow \varepsilon=\frac{4 c}{9 * 2 \sqrt{k m / 9}}=\frac{2 c}{3 \sqrt{k m}}$.

$$
\begin{aligned}
& \omega_{d}=\omega_{n \sqrt{1-\varepsilon^{2}}} \\
& =3 \sqrt{\frac{k}{m}} \sqrt{1-\frac{4 c^{2}}{9 k m}} \\
& f_{d}=\frac{\omega_{d}}{2 \pi}=\frac{1}{2 \pi} \sqrt{\frac{9 k}{m}-\frac{9 * 4 c^{2} k}{9 k m^{2}}} \\
& =\frac{1}{2 \pi} \sqrt{\frac{9 k}{m}-\frac{2 c^{2}}{m^{2}}} \\
& =\frac{1}{2 \pi m} \sqrt{9 k m-4 c^{2}} \mathrm{~Hz}
\end{aligned}
$$

on stendant

- Example: A piston of mass $(4.53 \mathrm{~kg})$ is traveling in a tube with a velocity of ($15.24 \mathrm{~m} / \mathrm{s}$) and engages a spring and damper as shown. Determine the maximum displacement of the piston afterengag.ing the spring-damper. amplitude
Solution:

$$
m \ddot{x}+c x^{i}+k x=0 \quad\left\{\quad v=15-2 \mathrm{Hm} / \mathrm{s} \quad c=1 r^{2}+5 \cdot N \cdot s / \mathrm{km}\right.
$$

\therefore the solution of this equation of nation is,

$$
x(t)=\bar{Z} \cdot e^{-\varepsilon \omega_{n} t} \cdot \sin \left(\sqrt{1-\varepsilon^{2}} \cdot \omega_{n} t+\phi\right)
$$

$$
\dot{x}(t)=\bar{X}\left[e^{-\varepsilon \cdot \omega_{n} t} \cdot \sqrt{1-\varepsilon^{2}} \cdot \omega_{n} \cdot \cos \left(\sqrt{1-t^{2}} \cdot \omega_{n} t+\phi\right) \quad k=350 N / k m\right.
$$

$$
-\varepsilon \cdot \omega_{n} \cdot e^{-\varepsilon \cdot \omega_{n} \cdot t} \cdot \sin \left(\sqrt{1-\varepsilon^{2}} u_{n} t+\phi\right)
$$

* at $t=0, x(0)=0 \Rightarrow 0=\bar{x} \cdot \sin \phi \Rightarrow \therefore \phi=\dot{0}$
* at $t=0, x(0)=15.24 \mathrm{~m} / \mathrm{s} \Rightarrow 15.24=X\left(\sqrt{1-\varepsilon^{2}} \cdot \omega_{n}\right)$

But $\omega_{n}=\sqrt{\frac{k}{m}}=\sqrt{\frac{35000}{4.53}}=87.899 \mathrm{rad} / \mathrm{s}$

$$
\begin{aligned}
& \mathcal{E}=\frac{C}{2 . m \cdot \omega_{n}}=\frac{1.75 * 100}{2(4.53)(87.899)}=0.2198 \\
\Rightarrow \quad 15.24 & =\bar{X}\left(\sqrt{1-0.2198^{2}}\right)(87.899) \\
\therefore \quad \bar{X} & =0.1777 \mathrm{~m} .
\end{aligned}
$$

How

$$
\therefore \quad x(t)=0.1777 \cdot e^{-\int w_{n} \cdot t} \cdot \sin \left(\sqrt{1-\int^{2}} w_{n \cdot t}+\infty\right)
$$

$$
\text { Note } \sin \phi=0 \Rightarrow \phi=0
$$

$$
\therefore x(t)=0.1777 \cdot e^{\delta \omega_{n i t}} \cdot \sin \sqrt{1-\Gamma^{2}} \omega_{n} t
$$

"ie rf, 幺

Example: write the differential equation of motion for the system shown. and determine the natural frequency of damped oseeillation and the critical damping coefficient.

$$
\begin{aligned}
& \text { Solution: } \\
& \sum M_{0}=I_{0} \ddot{\theta} \Rightarrow-c \dot{x} a-k x b=M a^{2} \ddot{\theta} \\
\Rightarrow & M a^{2} \ddot{\theta}+c x^{0} a+k x b=0 \\
\Rightarrow & M a^{2} \ddot{\theta}+c a^{2} \dot{\theta}+k b^{2} \theta=0 \\
\Rightarrow & M \ddot{\theta}+c \dot{\theta}+k \frac{b^{2}}{a^{2}} \theta=0 \\
\Rightarrow & \ddot{\theta}+\frac{c}{M} \dot{\theta}+\frac{k}{M} \cdot \frac{b^{2}}{a^{2}} \theta=0
\end{aligned}
$$

$\therefore \quad \omega_{n}=\left(\frac{k}{M} \cdot \frac{b^{2}}{a^{2}}\right)^{1 / 2}$

$$
O R \quad \theta^{\circ}+2 \varepsilon \omega_{n} \theta^{\prime}+\omega_{n}^{2} \theta=0
$$

But:

$$
\begin{aligned}
& w_{d}=\sqrt{1-c^{2}} w_{n} \Rightarrow: f_{d}=w_{d} \sqrt{\frac{k}{2} \cdot \pi^{\frac{b^{2}}{a^{2}}}}=\frac{1}{2 \pi} \sqrt{\left(\frac{b}{a}\right)^{2} \cdot \frac{k}{M}-\left(\frac{c}{2 M}\right)^{2}} . \\
& \varepsilon=\frac{C}{C_{i}} \Rightarrow \\
& C_{c}=\frac{c}{c}=2 M\left(\frac{b^{2}}{a^{2}} \cdot \frac{k}{M}\right)^{1 / 2}=\frac{2 b}{a}(k \cdot M)^{1 / 2} .
\end{aligned}
$$

Example: The disc of mass (m) and (R) see in fig below is supported by an elastic shaft of diameter (D) and length (L). The elastic properties of the shaft are determined by the shear modulus (G). The disc can oscillate a bout the vertical axis and the damping is modelled by the linear damper of a coefficient (C). Produce equation of motion of the disc and determine the natural frequency.
solution:

$$
\begin{aligned}
& \text { t) } \sum M_{0}=I \ddot{\theta} \\
& I \ddot{\theta}=-T-C x \cdot R \\
& \text { But } x=R \theta \\
& I \ddot{\theta}=-k_{T} \theta-c R^{2} \dot{\theta} \\
& I \ddot{\theta}+C R^{2} \dot{\theta}+k-\theta=0 \\
& \because T=k_{1} \theta \Rightarrow \\
& k_{T}=\frac{T}{\Theta}=\frac{J \cdot G \cdot \theta}{\sigma} \\
& \Rightarrow K_{T}=\frac{G \cdot I}{i} \\
& \therefore I \theta \ddot{\theta}+C R^{2} \dot{\theta}+\frac{G \cdot I}{L} \theta=0 \\
& \theta^{*}+\frac{C R^{2}}{I} \theta^{0}+\frac{G \cdot J}{L I} \theta=0 \\
& \therefore 2 G \omega_{n}=\frac{C R^{2}}{I} \Rightarrow \varepsilon^{c}=\frac{C R^{2}}{2 I \omega_{n}} \\
& \omega_{n}^{2}=\frac{G \cdot I}{L I}
\end{aligned}
$$

Chapter Three
 Forced Harmonic Vibration

Harmonic excitation is often encountered in engineering systems. It is commonly produced by the unbalance in rotating machinery. Although pure harmonic excitation is less likely to occur than periodic or other types of excitation, understanding the behavior of a system undergoing harmonic excitation is essential in order to comprehend how the system will respond to more general types of excitation. Harmonic excitation may be in the form of a force or displacement of some point in the system.

We will first consider a single DOF system with viscous damping, excited by a harmonic force $F_{0} \cos \omega t$, as shown in Figure 1. Its differential equation of motion is found from the free-body diagram.

$$
\begin{equation*}
m \ddot{x}+c \dot{x}+k x=F \cos \omega t \tag{1}
\end{equation*}
$$

Figure 1. Viscously Damped System with Harmonic Excitation
The solution to this equation consists of two parts, the complementary function, which is the solution of the homogeneous equation, and the particular integral. The complementary function. in this case, is a damped free vibration.

The particular solution to the preceding equation is a steady-state oscillation of the same frequency w as that of the excitation. We can assume the particular solution to be of the form :
$x=X \operatorname{Cos}(\omega t-\phi)$

The steps :-

$$
\begin{equation*}
m \cdot x^{\circ 0}+c \cdot x^{\circ}+k \cdot x=F_{0} \cdot \cos \omega t \tag{1}
\end{equation*}
$$

assume $x=X \cdot \operatorname{Cos}(\omega t-\varnothing)$
The Particular solution
$x^{0}=-X \cdot \omega \cdot \sin \omega t-\varnothing ; X^{0}=-\bar{X} \cdot \omega^{2} \cdot \cos \omega t-\varnothing$ subjoin (1)
$m\left(-X \omega^{2} \cdot \cos \omega t-\varnothing\right)-C(X \omega \cdot \sin \omega f-\varnothing)+K \cdot(X \operatorname{Cos} \omega t-\varnothing)=$ Fo. Cos ωt
But $\operatorname{Cos} \omega+-\phi=\cos \omega t \cdot \cos \phi+\sin \omega+\sin \theta$
and $\sin \omega t-\phi=\sin \omega t \cos \theta-\sin \phi \cdot \cos \omega t \operatorname{sut}$ in (1)
$X[-m \omega^{2} \cdot \underbrace{\cos \omega t} \cdot \cos \phi+c \omega \cdot \sin \phi \cdot \underbrace{\cos \omega t}+K \cdot \cos \omega t \cdot \cos \theta]=F_{0, \cos \omega t}$ $\underline{X}\left[\left(k-m \omega^{2}\right) \cdot \cos \phi+c \cdot \omega \cdot \sin \phi\right]=F_{0} \omega^{*}$
so $\bar{X}\left[-m \omega^{2} \cdot \sin \omega t \cdot \sin \phi-c \omega \cdot \sin \omega t \cdot \cos \phi+K \cdot \sin \omega+\sin \phi\right]=0$

$$
\begin{aligned}
& \therefore X\left[\left(k-m \omega^{2}\right) \sin \phi-c \omega \cdot \cos \phi\right]=0 \quad c+\infty \cdot \cos \phi+\sin \phi+\left(k-m \omega^{2}\right) \cdot \sin \phi=c \omega \cdot \cos \phi \\
& \therefore(\phi)
\end{aligned}
$$

$\therefore\left(k-m \omega^{2}\right) \cdot \sin \phi=c \omega \cdot \cos \phi \Rightarrow \tan \phi=c \cdot \omega$

$$
\begin{aligned}
& \therefore \sin \phi=\frac{c \cdot \omega}{\sqrt{\left(k-m w^{2}\right)^{2}+c^{2} \cdot w^{2}} ; \cos \phi=} \begin{array}{l}
\operatorname{sub} \sin (*) \\
X\left(\frac{\left(\left(k-m w^{2}\right)^{2}+c^{2} \cdot \omega^{2}\right.}{\left.\left(k-m w^{2}\right)^{2}+c^{2} \cdot w^{2}\right)}\right.
\end{array}=F_{0}
\end{aligned}
$$

$=\frac{k-m \omega^{2}}{\left(k+w^{2}\right)}$

$\therefore X=\frac{F_{0}}{\sqrt{\left(k-m w^{2}\right)^{2}+c^{2}-\omega^{2}}} \quad$ divided on k

$$
X=\frac{F_{0} / k}{\sqrt{\left(1-\frac{m w^{2}}{k}\right)^{2}+\left(\frac{c \cdot w}{k}\right)^{2}} ; L_{0} \quad \tan \phi=\frac{\frac{c \cdot w}{k}}{\left(1-\frac{m w^{2}}{k}\right)}}
$$

$$
\text { But } w_{n}=\sqrt{\frac{k}{m}} \text { and } c_{c}=2 m \cdot w_{n} ; \delta=\frac{c}{c_{c}}
$$

$$
\frac{c \cdot w}{k}=\frac{c c}{c_{c}} \cdot \frac{c \cdot w}{k}=\int \cdot \frac{2}{\frac{c}{m \cdot w} \cdot w_{n} \cdot w} \frac{k}{k}=25 \cdot \frac{w / n \cdot w}{w_{n}^{4}}=2 f \cdot \frac{w}{w_{n}}
$$

$\therefore \frac{c . w}{k}=25, \frac{w}{w_{n}} \longrightarrow \not x \neq \operatorname{sub}$

$$
\begin{aligned}
& X=\frac{F_{0} / k}{\sqrt{\left(1-\frac{w^{2}}{w_{n}^{2}}\right)^{2}+\left(2 \xi \cdot \frac{w}{w_{n}}\right)^{2}}} \quad \text { Note/ } \frac{F_{0}}{k}=\delta_{\text {static }} \\
& \therefore \tan \phi=\frac{2 f \cdot \frac{w}{w_{n}}}{1-\left(\frac{w}{w_{n}}\right)^{2}}
\end{aligned}
$$

The total response can be write $\left(x(t)=\left.x\right|_{p}+\left.X\right|_{h}\right)$
$\because X(t)=X \cdot \cos (\omega t-\phi)+X_{0}-e^{\prime} \omega_{n \cdot t}\left(\cos ^{\prime}\left(\omega t-\phi_{0}\right)\right.$
$\omega_{d}=\sqrt{1-\rho^{2}}, w$

$$
\left[\begin{array}{l}
\left.\therefore x(t)=\frac{\left.F_{0} / k \cdot \operatorname{Cos} \omega t-\phi\right)}{\sqrt{\left(\overline{1}-\frac{w^{2}}{\omega_{n}}\right)^{2}+\left(2 F \cdot \frac{\omega}{\omega_{n}}\right)^{2}}+X_{0} \cdot e^{-F \omega_{n} t} \cdot \operatorname{Cos}\left(\sqrt{1-F^{2} \cdot \omega_{n}-\phi}\right)}\right]
\end{array}\right.
$$

or
$x(\theta)=X \sin (\omega t-\phi)+X_{0} \cdot e^{-\rho \omega a t} \cdot(\delta$

$$
\therefore\left\{\begin{array}{l}
x(t)=\frac{F_{0} / k \cdot \sin (\omega t-\phi)}{\left.\sqrt{\left(1-\frac{\omega^{2}}{\omega_{n}^{2}}\right)^{2}+(2} \cdot \frac{\bar{\omega}}{\omega_{n}}\right)^{2}}+X_{0} \cdot e^{-\varepsilon \omega_{n} t} \cdot\left(\sin \left(\sqrt{1-\xi^{2}} \cdot \omega_{n}-\phi\right)\right.
\end{array}\right.
$$

Finally: me can be describe the vibration system. by studying the ratio $\frac{w}{w_{n}}$ into three cases

* Case (1) where $\omega / \omega_{n} \ll 1$ we get the diagram as shown in
Noted $\theta=1$ its very small
(2) $m \omega^{2} \cdot x=$ Its very 5 mall
(3) cow. $x=$ its nog small

* Case 2
$\triangle \theta=90^{\circ}$
(2) $m \omega^{2} \cdot x=k \cdot x$

(J) $F_{0}=c \cdot w \cdot x$

Noted where $\frac{\omega_{1}}{\omega_{n}}=1 \quad \therefore\left(x=\frac{F_{0}}{c \cdot \omega_{n}}=\frac{F_{0}}{2 \xi \cdot k}\right) \quad \frac{w}{\omega_{n}}=1$

* Case (3)
©

$$
\begin{aligned}
& \varnothing=180 \\
& \text { or } \varnothing>90
\end{aligned}
$$

(2)

(10)

Note //(1) $\left[x=\frac{F_{0}}{k \cdot(2 \varsigma)}\right]$
The ne sonant amplitude
(2) resonant Frequancy $\left(\frac{w_{1}}{w_{n}}\right)=$?
(3) The Peak amplitude $\left(\frac{w}{w_{n}}\right)_{p}=\sqrt{1-2 \xi^{2}}$

Example: A system of mass-spring-damper have $m=5 \mathrm{~kg}$; $K=4.5 \mathrm{kN} / \mathrm{m} ; c=300 \mathrm{~N} .5 / \mathrm{m}, \mathrm{F}=9 \sin 15 \mathrm{t} \mathrm{kN}$, the initial cm. ditions are $\dot{x}(0)=0$ and $x(0)=5 \mathrm{~cm}$. Find the equation of motion of this system.
solution:

$$
\underbrace{c i c}_{F_{=}^{2 m} 9 \sin 5 t}
$$

Where $\tan \phi=\frac{2 \varepsilon \frac{\omega}{\omega_{n}}}{1-\left(\frac{w}{\omega_{n}}\right)^{2}}$

$$
I=\frac{9000 / 4500}{\sqrt{\left[1-\left(\frac{15}{30}\right)^{2}\right]^{2}+\left(2 * 1 * \frac{15}{30}\right)^{2}}}=1.6 \mathrm{~m}
$$

and $\phi=\tan ^{-1}\left(\frac{2 * 1 * \frac{15}{30}}{1-\left(\frac{15}{30}\right)^{2}}=53.13^{\circ}=0.93 \mathrm{rad}\right.$

$$
\begin{aligned}
& x_{p}(t)=1.6 \sin (15 t-0.93) \\
& x(t)=(A+3 t) e^{-30 t}+1.6 \sin (15 t-0.93)
\end{aligned}
$$

at $t=0 \Rightarrow x(0)=0.05=A-1.28 \Rightarrow A=1.23$

$$
\begin{aligned}
& x(0)=0=-30 A+B+14.42 \\
& \Rightarrow B=22.48 \\
& \hdashline x(t)=(1.23+22.48 t) e^{-30 t}+1.6 \sin (154-0.93) .
\end{aligned}
$$

$$
\begin{aligned}
& \omega_{n}=(\mathrm{k} / \mathrm{m})^{1 / 2}=\left(4.5 * 10^{3} / 5\right)^{1 / 2}=30 \mathrm{rad} / \mathrm{sec} . \\
& \varepsilon=C / c_{c}=300 /(2 * 5-3.30)=1 \quad \text { (Critical damping) } \\
& \therefore x_{c}(t)=(A+B t) e^{-\omega_{n} \cdot t}=(A+B t) e^{-30 t} \\
& x_{p}(t)=\frac{F_{0}}{k} \frac{\sin (15 t-\phi)}{\sqrt{\left[1-\left(\frac{\omega}{\omega n}\right)^{2}\right]^{2}+\left(2 \varepsilon \frac{c 0}{\omega n}\right)^{2}}}=\mathbb{I} \sin (\omega t-\phi)
\end{aligned}
$$

Example: Amechine of weight 2.15 kg in a discase medium determine the damping coffecient when a harmonic exitation force of 27.5 since. Results in reju mace amplitude of (1.25 cm with a periade of 0.2 sec . $\omega=\frac{2 x}{\tau}=w_{0}$
Solution:
at resonance $\Rightarrow \omega_{n}=\omega=\frac{2 \pi}{\tau}=\frac{2 \pi}{0.2}=10 \pi \mathrm{rol} / \mathrm{sec}$.

$$
\begin{aligned}
& \therefore X=\frac{F 0 / k}{\sqrt{\left[1-\left(\frac{\omega}{\omega_{n}}\right)^{2}\right]^{2}+\left[2 \varepsilon \frac{\omega}{\omega_{n}}\right]^{2}}}=\frac{F_{0}}{k} \cdot \frac{1}{2 \varepsilon}=\frac{27.5}{2 \varepsilon k} \\
& \therefore \frac{1.25}{k 0}=\frac{27 \cdot 5}{2 \varepsilon k} \Rightarrow \underline{\varepsilon}=\frac{27.5 \times 100}{2 \cdot 5}=1100 \mathrm{~N} / \mathrm{m} \\
& \varepsilon k=\frac{C}{C} k=\frac{C}{2 m \omega_{n}} k=\frac{C \cdot \omega_{n}}{2}=\frac{C}{2}+10 \pi=5 \pi \cdot \\
& \Rightarrow C=1100 / 5 \pi=70 \mathrm{~N} .5 / \mathrm{m} .
\end{aligned}
$$

Example: A weight at attached to a spring of stiffness $(6 \mathrm{~N} / \mathrm{cm})$ has a descass damping device when the weight was displace and relased, the period of vibration was found to be 1.8 see \& the ratio consective amplitude was 4.2 to 1. Find the amplitude of the phase when a force $F=r 0 \cos 3 t$ acts on the system.
solution:

$$
\begin{aligned}
& F=F_{0} \sin \omega t \Rightarrow F_{0}=10, \omega=3, \omega_{n}=\frac{2 \pi}{\tau}=\frac{2 \pi}{i \cdot 8}=3.49 \mathrm{rad} / \mathrm{sec} \\
& f_{r}=\frac{w}{\omega v i n}=\frac{3 \times 1.8}{2 \pi}=0.859 \\
& \ln \frac{x_{1}}{x_{2}}=\frac{2 \pi \varepsilon}{\sqrt{1-\varepsilon^{2}}} \Rightarrow \varepsilon= \\
& x(t)=\frac{F 0 / k}{\sqrt{\left.L^{1}-f_{r}^{2}\right]+\left[2\left(f_{r}\right]^{2}\right.}}=\frac{10 \neq 100 / 6}{\sqrt{\left[1-0.85 y^{2}\right]+\left[2(2 n 0 \cdot 654]^{2}\right.}}= \\
& \phi=\tan ^{-1} \frac{2 \dot{C} f_{v}}{1-f_{1}^{2}}
\end{aligned}
$$

Examples Show that for the damping spring -mass system. the peak amplitude occurs at a frequency ratio given by the expression: $\frac{\omega}{\omega_{n}} l_{p}=\sqrt{1-2 \zeta^{2}}$
solution:

$$
\begin{aligned}
& \bar{X}=\frac{\frac{F_{0}}{K}}{\sqrt{\left[1-\left(\frac{e}{\omega n}\right)^{2}\right]^{2}+\left(2 \varepsilon \frac{\omega}{\omega_{n}}\right)^{2}}} \\
& \frac{d X}{d\left(\frac{w}{\omega_{n}}\right)^{2}}=0 \Rightarrow \\
& \Rightarrow 0=\frac{-F_{0}\left[\frac{1}{2}\left(2\left(1-\left(\frac{w}{w n}\right)^{2}\right) *-2\left(\frac{w}{w_{n}}\right)+2\left(2 \ell \frac{w}{w_{n}}\right) * 2 \zeta\right] *\left(\left(1-\left(\frac{w}{w_{n}}\right)^{2}\right)^{2}+\left(2 \ell \frac{w}{w_{n}}\right)^{-1 / 2}\right)^{2}\right.}{\left[\left(1-\left(\frac{w}{w_{n}}\right)^{2}\right)^{2}+\left(2 \zeta \frac{w}{w_{n}}\right)^{2}\right]} \\
& \Rightarrow 0=\frac{-F_{k}\left[\frac { 1 } { 2 } \left(2\left(1-\left(\frac{w}{\omega_{n}}\right)^{2}\right) *-2\left(\frac{w}{w_{n}}\right)+\varnothing \ell^{2}\left(\frac{w}{w_{n}}\right)\right.\right.}{\left[\left(1-\left(\frac{w}{w_{n}}\right)^{2}\right)^{2}+\left(2 \varepsilon \frac{w}{w_{n}}\right)^{2}\right]^{1 / 2} *\left[\left(1-\left(\frac{w}{w_{n}}\right)^{2}\right)^{2}+\left(2 \varepsilon \frac{w}{w_{n}}\right)^{2}\right]} \\
& \therefore-\frac{F 0}{k} L \frac{1}{2}\left(-4 \frac{\omega}{\omega_{n}}+4\left(\frac{\omega}{\omega_{n}}\right)^{3}+8 \cdot \varepsilon^{2} \frac{\omega}{\omega_{n}}=0\right. \\
& -4+4\left(\frac{w}{w n}\right)^{2}+8 g^{2}=0 \\
& 2 \varepsilon^{2}-1+\left(\frac{\omega}{\omega n}\right)^{2}=0 \\
& \Rightarrow\left(\frac{\omega}{\omega n}\right)^{2}=1-2 \varepsilon^{2} \\
& \left.\therefore \quad \frac{\omega}{\omega_{n}} \right\rvert\, \rho=\sqrt{1-2 c^{2}} .
\end{aligned}
$$

Unbalance in rotating machines is a common source of vibration excitation. We consider here a spring-mass system constrained to move in the vertical direction and excited by a rotating machine that is unbalanced, as shown in Figure 4. The unbalance is represented by an eccentric mass m with eccentricity e that is rotating with angular velocity w. By letting y be the displacement of the non rotating mass from the Fie equilibrium position, the displacement of m is:

$$
x=e \sin \theta \Rightarrow \text { But } \theta=\omega \cdot t
$$

$$
y=e \sin a t
$$

\therefore But $\theta=w . t$

Figure 4. Harmonic Disturbing Force Resulting from Rotating Unbalance

$$
\begin{aligned}
& \Sigma F=M \cdot \alpha^{0}+m \cdot \frac{d^{2} y}{d t^{2}} \\
& -k \cdot \frac{x}{2}-k \cdot \frac{x}{2}-c x^{0}=M \cdot x^{00}+m \cdot \frac{d t y}{d p^{2}} \\
& y=e \cdot \sin \omega t \\
& y^{\circ}=e_{\omega} \cdot \cos \omega t \\
& \begin{array}{r}
y^{y}=-e w^{2} \cdot \sin n+\begin{array}{l}
\text { subin } \\
\text { equan }
\end{array} \\
\hline
\end{array} \\
& \text { equar } \\
& F_{5}=k / 2 \cdot x \quad F_{d}=c \alpha^{\circ} \quad F_{5}=k / 2 \cdot x \\
& \because \quad k \cdot \alpha-c \cdot \alpha^{0}=M \alpha^{\infty}+m \cdot\left(-e \cdot \omega^{2} \cdot \sin \omega t\right) \\
& \therefore \quad M \cdot \alpha^{00}+c \alpha^{0}+k \cdot \alpha=m \cdot e \cdot \omega^{2} \sin \omega t \\
& \mu \cdot \alpha^{00}+c \cdot \alpha^{0}+k \cdot \alpha=\text { Fo. Sin } \omega t \\
& \therefore F_{0}=m e \cdot w^{2} \\
& \therefore \quad A=\frac{F_{0} / k}{\sqrt{\left(1-\left(\frac{w}{w_{n}}\right)^{2}\right)^{2}+\left(2 f \cdot \frac{\omega}{\omega_{n}}\right)^{2}}} \\
& \therefore \dot{x}=\frac{m e \cdot \omega^{2} / k * \frac{M}{M}}{\sqrt{\left(1-\left(\frac{\omega}{w_{1}}\right)^{2}\right)^{2}+\left(2 \sum \cdot \frac{w}{m_{n}}\right)^{2}}} \\
& \therefore \frac{M}{m} \cdot \frac{x}{e}=\frac{\left[\frac{w}{w_{1}}\right]^{2}}{\sqrt{\left(1-\left(\frac{m}{w_{n}}\right)^{2}\right)^{2}+\left(2 \varepsilon, \frac{w}{m_{n}}\right)^{2}}} \\
& \therefore \tan \phi=28 \omega / w_{n} /\left(1-\left(\frac{\omega}{w_{n}}\right)^{2}\right. \\
& \text { by molsir) fying } \frac{M}{M}
\end{aligned}
$$

Vibration Isolation

- Trunsmissibility (ar, äinén

Assuming that the forcing function is harmonic in nature, we shall consider two cases of vibration transmission-one in wiich force is transmitted to the supporting structure, and one in which the motion of the supporting structure is transmitted. to the machine.
(a) Force Excitation

Consider the system show below, Where $f(t)$ is the harmonic force acting on the system and $f_{T}(t)$ is the force transmitted to the supporting struct. use or base. The force transmitted through the spring and damper to the supporting structure is:

$$
\begin{aligned}
& F_{T}=\sqrt{(k x)^{2}+(c \omega x)^{2}}=k x \sqrt{1+\left(\frac{2 \% \omega}{\omega n}\right)^{2}} \\
& A_{f} F=F_{0} \sin \omega t, \text { then: }
\end{aligned}
$$ to the supporting structure.

$$
F_{0}=\left(k x / /\left(1-\left(\frac{\omega}{\omega_{n}}\right)^{2}\right)^{2}+\left(2 \sigma \frac{\omega}{\omega_{n}}\right)^{2}\right.
$$

we define the Transmissibility, $T R$, as:

$$
T R=\left|\frac{F_{T}}{F_{0}}\right|=\sqrt{\frac{1+\left(2 \zeta \frac{\omega}{\omega n}\right)^{2}}{\left(1-\left(\frac{\omega}{\omega n}\right)^{2}\right)^{2}+\left(2 \zeta \frac{\omega}{\omega n}\right)^{2}}}=\left|\frac{x}{y}\right|
$$

* Remarks:-

If $\varepsilon \Rightarrow 0 \Rightarrow T R=\frac{1}{\left|\left(\frac{\omega}{\omega n}\right)^{2}-1\right|}$ where $\frac{\omega}{\omega_{n}}>\sqrt{2}$
?. Not?: In order to decrease win we can either use a soft spring or increase the mass or both (since $\omega_{n}=$ $\left.\left(\frac{k}{m}\right)^{1 / 2}\right)$.

* An undamped spring is superior to damped spring in reduceing transmissibility (ie. when $\mathcal{\varepsilon}=0$).
* The Percentage reduction of TR: $R=(1-T . R) \times 100$ under per sere Example: A machine has a disturbance frequency of (15 c. P.s.s), it is mount on rubber bed with static deflection $(0.75 \mathrm{~cm})$. Find the percentagreduction of the transmitted force . Note: $5=0$

$$
\begin{aligned}
R & =(1-T R) * 100 \\
& =(1-0.1725) * 100 \\
& =82.75
\end{aligned}
$$

Example: Amachine of 200 kg mass is supported on $s p$ rings of total stiffness $1500 \mathrm{kN} / \mathrm{m}$ and has an unbalanced rotating element whee itch results ina sinusoidally fluctuating disturbing force of 400 N . Amplitude at a speed of 3000 rpm . Assuming a damping fac-
 unbalance, (b) the transmissibility, (c) the transmitted force.
a. $\quad \omega_{n}=(k / m)^{1 / 2}=(1500000 / 200)^{1 / 2}=36.8 \mathrm{rad} / \mathrm{sec}$ solution:

X Example: A machine of 700 kg mass is supported un springs. of total stiffness $700 \mathrm{kN} / \mathrm{m}$ and has an unbalanced rotating element which results in a disturbing force of 350 . Nat a speed of $3000 \mathrm{rev} /$ min . Assuming a damping factor of $\mathcal{E}=0.2$, determine:
(a) It's amplitude of motion due to the unbalance.
(b) The trans missibility.
(c) The transmitted force.

$$
\begin{aligned}
& \text { solution: }
\end{aligned}
$$

$$
\begin{aligned}
& \omega=3000 \times \frac{2 \pi}{60}=314.16 \mathrm{rad} / \mathrm{sec} . \\
& \bar{X}=\frac{\left(\frac{\bar{\sigma}_{0}}{k}\right):}{\sqrt{\left(1-\left(\frac{w_{n}}{w_{n}}\right)^{2}\right)^{2}+\left(2 \varepsilon \frac{w}{\omega_{n}}\right)^{2}}} \\
& =\frac{\left(350 / 700 \times 10^{3}\right)}{\sqrt{\left(1-\left(\frac{314.16}{83.66}\right)^{2}\right)^{2}+\left(2+0.2 * \frac{314.16}{83.66}\right)^{2}}}=0.0379 \mathrm{~mm} \\
& T R=\sqrt{\frac{1+\left(2 \ell \frac{\omega}{\omega n}\right)^{2}}{\left(1+\left(\frac{\omega}{\omega_{n}}\right)^{2}\right)^{2}+\left(2 \sum\left(\frac{\omega}{\omega n}\right)\right)^{2}}} \\
& =\sqrt{\frac{1+\left(2 *-0.2 * \frac{314 \cdot 16}{83.66}\right)^{2}}{\left(1-\left(\frac{34.166}{83 \cdot 66}\right)^{2}+\left(2 * 0.26 \frac{314.16}{83.66}\right)^{2}\right.}}=0.137 \\
& \text { c. } T R=\frac{F_{T}}{F_{0}} \Rightarrow F_{T}=T R \cdot F_{0} \\
& =0.137 * 350 \\
& =47.89 \mathrm{~N} \text {. }
\end{aligned}
$$

Examples Consider the machine of mass 1000 kg is supported on a vertical flexible mounting, modelled as a single degree of freedom system. The mounting has atatal stiffness $50 \mathrm{kNm}^{-1}$ and viscous damping is $5 \mathrm{kNm} \mathrm{m}^{-1} \mathrm{~s}$. Calculate the res ponce amplitude, the phase angle, and the force transmitted to the foundations whyen the driving frequency is (a) 20 Hz and (b) 2 Hz . The amplitude of the applied force is 2500 N .
solution:

$$
\text { a. } \begin{aligned}
& m=1000 \mathrm{~kg}, F 0=2500 \mathrm{~N}, c=5 \mathrm{kNm}^{-1} \mathrm{~s} \\
& \omega=20 \mathrm{~Hz}=2 \pi * 20=125.7 \mathrm{rad} \mathrm{~s}^{-1}, k=50 \mathrm{kNm}^{-1} . \\
\therefore & \omega_{n}=7.07 \mathrm{rad} \mathrm{~s}^{-1} \text {, and } r=\frac{\omega}{\omega_{n}}=17.8 .
\end{aligned}
$$

$$
C=c / 2 \sqrt{\mathrm{~km}}=5 * 10^{3} / 2 \sqrt{50 * 10^{3} * 1000}=0.35-4
$$

$$
\begin{aligned}
X & =\frac{F_{0} / k}{\sqrt{\left(1-r^{2}\right)^{2}+(22 r)^{2}}}=\frac{25001\left(50 * 10^{3}\right)}{\sqrt{\left(1-17.8^{2}\right)^{2}+(2 * 0.354 * 17.8)^{2}}} \\
& =\frac{0.05}{\sqrt{(-315.84)^{2}+12.6^{2}}}=\frac{0.05}{316.1}=1.58 * 10^{-4} \mathrm{~m}
\end{aligned}
$$

So the response amplitude is still very small af less than 0.16 mm .

$$
\begin{aligned}
\Rightarrow \phi & =\tan ^{-1} \frac{28 r}{1-r^{2}}=\tan ^{-1} \frac{2 * 0.354 * 17.8}{1-17.8^{2}} \\
& =\tan ^{-1} \frac{12.6}{-315.84}=\tan ^{-1}-0.04=177.7^{\circ}
\end{aligned}
$$

The amplitude of the force transmitted to the foundations:

$$
F_{F} F \cdot T_{R}=F_{0}\left[\frac{1+(2 \varepsilon r)^{2}}{\left(1-r^{2}\right)^{2}+(2 \varepsilon r)^{2}}\right]^{1 / 2}
$$

F_{T}

$$
=2500 *\left[\frac{1+(2 * 0.354 * 17 \cdot 8)^{2}}{\left(1-17.8^{2}\right)^{2}+(2 * 0.354 * 17 \cdot 8)^{2}}\right]^{1 / 2}=100 \mathrm{~N}
$$

b. $\omega=2.4 z=2 \pi * 2=12.57 \mathrm{rad}^{-1}$, and $r=1.78$

$$
\begin{aligned}
& \bar{x}=\frac{F_{0} / k}{\sqrt{\left(1-r^{2}\right)^{2}+(2 \varepsilon r)^{2}}} \\
&=\frac{2500 /\left(50+10^{3}\right)}{\sqrt{\left(1-1.78^{2}\right)^{2}+(2 * 0.354 * 1.78)^{2}}}=\frac{6.05}{6.297}=7.94400^{-3} \mathrm{~m} \\
& \tan \phi=\frac{2 \varepsilon r}{1-r^{2}}=\frac{2 * 0.35401 .78}{1-1.78^{2}}=\frac{1.26}{-2.16}=-0.58 \\
& \therefore \phi=\tan ^{-1}-0.58=149.7^{\circ}
\end{aligned}
$$

The amplitude of the force transmitted to the foundations:

$$
\begin{aligned}
P_{0}=F T & =F_{0}\left[\frac{1+(2 \varepsilon r)^{2}}{\left(1-r^{2}\right)^{2}+(2 \varepsilon r)^{2}}\right]^{1 / 2} \\
& =2500 *\left[\frac{1+(2 * 0.354 * 1.78)^{2}}{\left(1-1.78^{2}\right)^{2}+(2 \times 0.354 \times 1.78)^{2}}\right]^{1 / 2} \\
& =2500 \times\left[\frac{1+1.26^{2}}{(-2.16)^{2}+(1.26)^{2}}\right]^{1 / 2}=1608 \times 3 N
\end{aligned}
$$

The damping has reduced the response amplitude at the lower speed, but in both Cases, becouse r is greater than $\sqrt{2}$, the force transmitted has increased with the introduction of damping.

Example: A 40 kg motor is similar to the system shown in figure below. It is supported by four springs each of stiffness $250 \mathrm{Nm}^{-1}$. The rotor is unbalanced such that $;$, the un balance effect is equivalent to a mass of 5 kg located 50 mm from the axis of rotation. Find the amplitude of vibration and the force transmitted to the foundation when the speed of the motor is (a) $1000 \mathrm{rcv} / \mathrm{min},(b) 60$ rev 1 min . The damping ratio $\varepsilon=0.15$
solution:

$$
\begin{aligned}
& M=40 \mathrm{~kg}, K=4 * 250=1000 \mathrm{Nm}^{-1} \\
& m=5 \mathrm{~kg}, \quad e=50 \mathrm{~mm}=0.05 \mathrm{~m} \\
& \varepsilon=0.15
\end{aligned}
$$

* Speed of motor $=1000$ rev m^{-1}

$$
\begin{aligned}
& \Rightarrow \omega=\frac{1000 \% 2 \pi}{60}=104 \cdot 7 \mathrm{rad} \cdot 5^{-1} \\
& \omega_{n}=(\mathrm{k} / \mathrm{m})^{112}=(1000 / 40)^{1 / 2}=5 \mathrm{rad} .5^{-1} \\
& \therefore r=\omega / \omega_{n}=104.715=20.94 \\
& \bar{X}=\frac{m r^{2} e / M}{\sqrt{\left(1-r^{2}\right)^{2}+(26 r)^{2}}}=\frac{5 * 20.94^{2} * 0.05 / 40}{\sqrt{\left(1-20.94^{2}\right)^{2}+(2 * 0.15 * 20.94)^{2}}} \\
&=\frac{2.74}{\sqrt{191391.9+39.5}}=\frac{2.74}{437.5}=6.3 * 10^{-3} \mathrm{~m}
\end{aligned}
$$

$$
\begin{aligned}
\therefore E_{T} & =F_{0}\left[\frac{1+(2 \varepsilon r)^{2}}{\left(1-r^{2}\right)^{2}+(2 \varepsilon r)^{2}}\right]^{1 / 2}=m e \omega^{2}\left[\frac{1+(2 \varepsilon r)^{2}}{\left(1-r^{2}\right)^{2}+(2 \varepsilon r)^{2}}\right]^{1 / 2} \\
\therefore F_{T} & =580.05 *(104.7)^{2}\left[\frac{1+(2 * 0.15 * 20.94)^{2}}{\left(1-20.94^{2}\right)^{2}+(2 * 0.15 * 20.94)^{2}}\right]^{1 / 2} \\
& \left.=2740.5\left[\frac{40.46}{191431.4}\right]^{1 / 2}=39.84 \mathrm{~N}\right)
\end{aligned}
$$

* Speed of motor $=60$ rev $\min ^{-1}=\frac{60 * 2 \pi}{60}=6.28 \mathrm{rad} \mathrm{s}^{-1}$ and $r=\frac{\omega}{\omega_{n}}=\frac{6.28}{5}=1.26$

$$
\begin{aligned}
\bar{X} & =\frac{m r^{2} e / M}{\sqrt{\left(1-r^{2}\right)^{2}+(2 \varepsilon r)^{2}}}=\frac{5 * 1.26^{2} * 0.05 / 40}{\sqrt{\left(1-1.26^{2}\right)^{2}+(2 * 0.15 * 1.26)^{2}}} \\
& =\frac{0.00992}{\sqrt{0.345+0.143}}=\frac{0.00992}{0.698}=0.014 \mathrm{~m} \\
\therefore F_{T} & =5 * 0.05-6.28^{2}\left[\frac{1+(2 * 0.15 * 1.26)^{2}}{\left(1-1.26^{2}\right)^{2}+(2 * 0.15 * 1.26)^{2}}\right]^{12} \\
& =9.86\left[\frac{1.143}{0.488}\right]^{1 / 2}=15.1 \mathrm{~N}
\end{aligned}
$$

1 -Example: Anelectric motor of moss 68 kg is mounted on an isolator block of mass 1200 kg and the natural frequency of the total assembly is 160 c.p.m with adamping factor of $\varepsilon=0.1$. If there is an unbalance in the motor that results in a harmonic force of $E=100 \sin 31.4 t$, determine the amplitude of vibration of the block and the force transmitted to the floor. solution.

$$
\begin{aligned}
& \omega_{n}=\left(160 * \frac{2 \pi}{60}\right)=16.755 \mathrm{rad} / \mathrm{sec} . \\
& m_{\text {total }}=1200+68=1268 \mathrm{~kg} \\
& \begin{aligned}
w_{n}=(k / m)^{1 / 2} \Rightarrow k=w_{n}^{2} m & =(16.755)^{2} * 1268 \\
& =356 \mathrm{kN} / \mathrm{m} .
\end{aligned} \\
& X=\frac{F_{0} / k}{\sqrt{\left(1-\left(\frac{w}{w_{n}}\right)^{2}\right)^{2}+\left(2 \varepsilon \frac{w}{w_{n}}\right)^{2}}} \\
& \Rightarrow \quad X=\frac{100 /\left(356 * 10^{3}\right)}{\sqrt{\left(1-\left(\frac{31.4}{16.755}\right)^{2}\right)^{2}+\left(2 * 0.1+\frac{31.21}{16.755}\right)^{2}}}=0.1106 \mathrm{~mm} \\
& F_{T}=F_{0} * \sqrt{\frac{1+\left(2 \varepsilon \frac{w}{w n}\right)^{2}}{\left(1-\left(\frac{w}{w n}\right)^{2}\right)^{2}+\left(2 \varepsilon \frac{w}{w n}\right)^{2}}} \\
& =100 * \sqrt{\frac{1+\left(2 * 0.1 * \frac{31.4}{16.755}\right)^{2}}{\left(1-\left(\frac{31.4}{16.755}\right)^{2}\right)^{2}+\left(2 * 0.1 * \frac{31.4}{16.755}\right)^{2}}} \\
& =42 N \text {. }
\end{aligned}
$$

(b) Motion Excitation:

The system that illustrates motion excitation is shown. The motion of the dynamic system is represented by the variable x and the harmonic displacement of the supporting base is represented by the variable y. The equation that does-
 crimes the dynamics of the system is::

From fig ane show that $x>y$

$$
\begin{aligned}
& m \ddot{x} \phi=\sum E p \\
&=-k(x-y)-c\left(x^{\dot{-}}-\dot{y}\right) \\
& m \ddot{x}+c \dot{x}+k x=c y^{i}+k y
\end{aligned}
$$

let $y=y \sin \omega t$

$$
x=\pi \sin (\omega t-\phi)
$$

$$
\therefore m \omega^{2} \bar{x} \sin (\omega t-\phi)+c \omega \bar{x} \cos (\omega t-\phi)
$$

$$
+k I \sin (\omega t-\phi)=(\omega y \cos \omega t+k y \sin \omega t
$$

$$
\begin{aligned}
& \sqrt{\left(k \bar{x}-m \omega^{2} \bar{X}\right)^{2}+(c \omega \bar{X})^{2}}=\sqrt{(k y)^{2}+(c \omega Y)^{2}} \\
& \delta^{6}\left|\frac{\bar{X}}{Y}\right|=\sqrt{\frac{k^{2}+(c \omega)^{2}}{\left(k-m \omega^{2}\right)^{2}+(c \omega)^{2}}}=\sqrt{\frac{1+\left(2 C \frac{\omega}{\omega_{n}}\right)^{2}}{\left.\left(1-6 \cdot \frac{\omega}{\omega_{n}}\right)^{2}\right)^{2}+\left(28 \frac{\omega}{\omega n}\right)^{2}}}=\mathbb{R} \\
& \tan \alpha=\frac{c \omega Y}{k Y}=\frac{c \omega}{k}=\frac{2 \xi . \omega / w_{1}}{1} \\
& \tan \phi=2 \dot{x}\left(\frac{\omega}{w_{n}}\right)^{3} /\left(1-\left(\frac{\omega}{w_{n}}\right)^{2}+\left(2 q \frac{w}{w_{n}}\right)^{2}\right. \\
& X(t)=X_{r}(t)+X_{h}(t) \\
& \left.\alpha(t)=\bar{X} \cdot \sin (\omega t-\phi)+\mathbb{X} \cdot e^{-\xi u_{n} t} \cdot \sin \omega d t-\varnothing \theta\right)
\end{aligned}
$$

Example10 For the system shown in Fig, Find (1) The amplitude of the mass
(2) The Mad acceleration.

Assume thea $\mathcal{F}=0$ (No damping affects the rubber)

Example 2:- For the same mechanical vibrationststemup, Find it amplitude of the mass and angle phases when $f=0.2$
(2) The max acceleration.
© Compare between two amplitudes.
4 TR. (Transmissibility)

Angular Example 1
Sol:- No damping $\rightarrow \mathcal{S}=0$ at rubber supporting

But $\mathcal{F}=0$

$$
\therefore \frac{1}{\sum=\frac{1}{\left(1-\left(\frac{w}{w_{A}}\right)^{2}\right)} \quad \hbar_{2}=0.09 \sin 3 t}
$$

$0 \quad x_{2}=0.09 \sin 3 t f+\Leftrightarrow y=y . \sin \omega t$ $\therefore Y=0.99 \mathrm{ft}$
and $w_{1}=\sqrt{\frac{k}{m}}=\sqrt{\frac{50 * 12}{3.86 / 32.2}}=70.74 \mathrm{rad} / \mathrm{s}_{\mathrm{ce}}$

$$
\begin{aligned}
& \therefore \frac{a .09}{X}=\frac{1}{\left(1-\left(\frac{3}{70.74}\right)^{2}\right)} \Rightarrow X=0.09(0.9982) \\
& \therefore X=0.0898 \mathrm{ft} \\
& Y=0.09 \sin 3 t \Rightarrow Y^{0}=0.09 \times 3.65 \mathrm{~g} \\
& \therefore \quad \text { the Max acceleration ocd }
\end{aligned}
$$

$$
\begin{aligned}
& Y=0.09 \text { the max acceleration- } \begin{array}{l}
\text { at } \sin 3 t=1 \\
y^{00}=-0.09 \times 3^{2} \cdot \sin t=-0.81 \mathrm{rad} / \mathrm{sec}^{2} \\
\therefore y^{00}=-0.09 \times 9 * 1=
\end{array}, l
\end{aligned}
$$

$$
\begin{aligned}
& y^{00}=-0.09 * 3 \cdot 0100 \\
& \therefore y^{00}=-0.09 * 9 * 1=0.81 \mathrm{rad} / \mathrm{sec}^{2}
\end{aligned}
$$

Vehicle Traveling over a Bumpy Road

Consider a simple model of a vehicle moving over a bumpy road as illustrated in the following figure. Assume that the vehicle vibrates only in the vertical direction, the stiffness and damping effects of the tire can be neglected, and the tire has good traction and never leaves the road surface.

The free body diagram of this moving-base system can be illustrated as,

Suppose that the vehicle is traveling at a constant speed, v, and the road roughness can be approximated by the equation,

$$
y_{R o a d}(x)=Y_{\text {Road }} \sin \left(\frac{2 \pi x}{L}\right)
$$

The road roughness can then be rewritten in terms of time (instead of position),

$$
\begin{aligned}
& y_{R_{0, u j}(t)}=Y_{\text {Rusid }} \sin \left(\frac{2 \pi}{i} t\right)=Y_{R \alpha a d} \sin \omega t \\
& \text { where } \omega=\frac{2 \pi v}{L}
\end{aligned}
$$

The harmonic moving base system is then equivalent to a harmonic vibration excitation with the equation of motion,

$$
\begin{aligned}
& \overline{m \dot{y}+c \dot{y}+k=c \omega Y_{\text {Rood }} \cos \omega t+k Y_{\text {Road }} \sin \omega t} \mid \\
& \frac{Y}{Y_{\text {Rad }}}=\sqrt{\frac{\left(1+\left(25 \cdot \frac{w}{m}\right)^{2}\right.}{\left(1-\left(\frac{\omega}{\omega_{n}}\right)^{2}\right)^{2}+\left(25, \frac{\omega}{m}\right)^{2}}} \\
& \phi=\tan ^{-1} \frac{2 \rho \cdot \frac{w}{w_{n}}}{\left(1-\left(\frac{w}{w_{n}}\right)^{2}\right)} \\
& B=A=\tan ^{-1} \frac{2 \Gamma W / m_{1}}{1}
\end{aligned}
$$

(1) $\omega=2 \pi \cdot \frac{v}{L} \quad v:$ The velocity of vechile wised
(2) $Y_{\text {road }}=Y_{\text {road }}$. $\sin \omega t$ and $\underset{\sim}{w}=\frac{E \pi . U}{L} ; Y_{\text {road }}=$ The amplitude 0
G Describe of motion of road by:road (m)

$$
Y_{\text {rad }}=Y_{\text {road }} \cdot \sin \frac{2 \pi \cdot x}{L}
$$

(4) Max amplitude occursat
$\omega=w_{n} \sqrt{C 1-2 \mathcal{S}^{2}}$
(5) $\frac{Y}{Y_{\text {rod }}}=\sqrt{\frac{\left(1+\left(2 \Gamma \cdot \frac{w}{m_{2}}\right)^{2}\right.}{\left(1-\left(\frac{w}{m}\right)^{2}+\left(2 q \cdot \frac{w_{1}}{m_{2}}\right)^{2}\right.}}$

Example: For the system shown in figure, $(m=1200 \mathrm{~kg})$) $(k=400 \mathrm{kN} / \mathrm{m}):(\varepsilon=0.5) \times(Y=0.05 \mathrm{~m})$, and wave long th. $(6 \mathrm{~m})$. Find $X ? \quad V=100 \mathrm{~km} / \mathrm{K}$

$$
\begin{aligned}
& \text { solution: } \\
& \text { solution } \\
& \frac{Z}{Y}=\frac{\sqrt{k^{2}+(c \omega)^{2}}}{\sqrt{\left(k-m \omega^{2}\right)^{2}+(c \omega)^{2}}}=\sqrt{\frac{1+\left(29 . \frac{\omega}{m}\right)^{2}}{\left(1-\left(\frac{w}{m}\right)^{2}\right)^{2}+\left(2 f \frac{w}{n}\right)^{2}}} \\
& C^{c}=C / C_{c} \Rightarrow C=\mathcal{V}_{1} C_{c} \\
& \text { But } C_{C}=2 m \omega_{n}=2 m(\mathrm{k} / \mathrm{m})^{1 / 2} \\
& \therefore C=0.5 * 2 * 1200 *\left(4.00 \times 10^{3} / 1200\right) \\
& =21909 \text { NoS } / \mathrm{m} \text {. } \\
& \int B=Y * \frac{\sqrt{k^{2}+(c \omega)^{2}}}{\sqrt{\left(k-m \omega^{2}\right)^{2}+(c \omega)^{2}}} \\
& \begin{array}{l}
\omega=2 \pi F=2 \pi *\left(\frac{10001000}{3600}\right) \times \frac{1}{6}=29.0887 \mathrm{rad} / \mathrm{scc} . \\
\omega=2 \pi \cdot \underline{v} .
\end{array} \\
& \omega=2 \pi \cdot \frac{V^{\circ}}{L} \\
& X=0.05 * \frac{\sqrt{\left(400 * 10^{3}\right)^{2}+(21909 * 29.0887)^{2}}}{\sqrt{\left(400 * 10^{3}-1200 * 29.0887^{2}\right)^{2}+(21909+29.0887)^{2}}} \\
& \text { Sol:- }
\end{aligned}
$$

- Examples A trailer of mass 1000 ky is pulled with a constans speed of $50 \mathrm{~km} h^{-1}$ oyer a bumpy road which may be modelled as a sine wave of wave length 5 m and amplitude 50 mm . Assume that the effective stiffness of the suspension is $350 \mathrm{kN} \mathrm{m}{ }^{-1}$ and that the damping ratio 0.5 . Determine the amplitude of the motion of the trailer and find the speed of the trailer at which this amplitude becomes a maximum.

Solution: $\quad m \quad V=50 \mathrm{~km} \mathrm{~h}^{-1}$

50 mm

This is forced vibration due to ground excitation in effect. Imagine that the trailer is stationery and the ground under s neath is being moved to the left at a speed of:

$$
50 \mathrm{kmh}^{-1}=50 \times 1000 / 3600=13.9 \mathrm{~ms}^{-1} .
$$

One cycle will have occurred when the ground has moved 5 m . This Will take $5 / 13.9 \mathrm{~s}$. So the number $\begin{aligned} & \text { of cycles per second is } 13.9 / 5=2.78 \cdot \omega=\frac{2 \pi \cdot U}{L} \\ & \because m=1000 \mathrm{~kg}, k=350 \mathrm{kN.min}, \varepsilon=0.5 \\ & \omega=2 \pi f=2 \pi-2.78=17.47 \mathrm{rad} \mathrm{s}^{-1} \\ & y=50 \mathrm{~mm}=0.05 \mathrm{~m}\end{aligned} \quad \because \omega=\frac{2 \pi+50+\frac{1000}{3800}}{5}$ $\omega=17.48 \mathrm{maf}_{\mathrm{ce}}{ }^{3}$

$$
\because C v_{n}=(k / m)^{1 / 2}=((350 * 1000) / 1000)^{1 / 2}=18.71 \operatorname{rach} s^{-1}
$$

wO, $r=v /$ un $=14.47 / 18 \cdot 71=0.934$

$$
\begin{aligned}
& \therefore F^{\prime}=\operatorname{ran}_{\text {rod }}\left[\frac{1+(2 \varepsilon r)^{2}}{\left(1-r^{2}\right)^{2}+(2 \varepsilon r)^{2}}\right]^{1 / 2}=0.05\left[\frac{1+(2 * 0.5 * 0.934)^{2}}{\left(1-0.934^{2}\right)^{2}+(2 * 0.5 * 0.934)^{2}}\right]^{1 / 2} \\
&=0.05\left[\frac{1+0.872}{0.016+0.872}\right]^{112}=0.05 * \sqrt{2.108}=0.073 \mathrm{~m} \\
&=73 \mathrm{~mm}
\end{aligned}
$$

The maximum amplitude occurs when

$$
a=a_{n} \sqrt{1-2 c^{2}}=18.71 * \sqrt{1-2 * 05^{2}}=13 \mathrm{~m} 23 \mathrm{rad} s^{-1}
$$

The driving frequency (in $H Z$) is the speed, v, divided by the wavelength, so

$$
\omega=\frac{2 \pi * V}{5} \Rightarrow V=\frac{5 * \omega}{2 \pi}=\frac{5 \times 13.23}{2 \pi}=10.53 \mathrm{~ms}{ }^{1}
$$

The speed at which the amplitude of the trailer motion reaches a maximumis

$$
\begin{aligned}
& \frac{10.53 * 3600}{1000}=38 \mathrm{kmh}^{-1} . \\
& 6=\frac{2 \pi .6}{2}
\end{aligned}
$$

va م-201

- Whirling of Rotating Shafts.

Whirling is defined as the rotating of the plane made by the bent shaft and the line of centers of the bearing.

Consider here a single disk of mass (m)
symmetrically $10 c a t e d$ on a shaft supported by two bearing as shown in the figure: The center of mass (G) of the disk is at a distance (c) (ccentricity) from the geometric center ($\left(s^{\prime}\right.$) of the disk. The center line of the bearings intersects the plane of the disk at (01 , and the shaft cen ter is deflected by $r=0 s$.
:o the coordinates of (S) are $\left(x_{s}, y_{s}\right)$.
 the coordinates of (G) are ($\left.x_{s}+e \cos \omega t, y_{s}+e \sin \omega t\right)$.
\therefore the equations of motion in the re and y direction are; $m \frac{d^{2}}{d t^{2}}\left(x_{s}+e \cos \omega t\right)=-k x_{s}-c x_{s}$ and $m \frac{d^{2}}{d t^{2}}\left(y_{5}+e \sin \omega t\right)=-k y_{5}-c y_{5}^{\circ}$
$O R m x_{s}^{2}+c i_{s}+k x_{s}=m e \omega^{2} \cdot \cos \omega t$.

$$
m x_{s}+c x_{s}+k x_{s}=m e \omega^{2} \cdot \sin \omega t \text {. }
$$

$$
\begin{aligned}
\Rightarrow \quad x_{s} & =\frac{m e \omega^{2}}{\sqrt{\left(k-m \omega^{2}\right)^{2}+(\omega)^{2}}} \cdot \cos (\omega t-\phi) \\
y_{s} & =\frac{m e \omega^{2}}{\sqrt{\left(k-m \omega^{2}\right)^{2}+(c \omega)^{2}}} \cdot \sin (\omega t-\phi) \\
x_{s} & =I_{s} \cos (\omega t-\phi), y_{s}=y_{s} \sin (\omega t-\phi)
\end{aligned}
$$

Engineering College Mechanic Department Fourth Stage
$V_{\text {Beatrix }}$ mini
and

$$
\begin{aligned}
O S=r & =\sqrt{x_{s}^{2}+y_{s}^{2}} \\
& =\sqrt{\left(\frac{m e \omega^{2}}{\left(\frac{\left.k-m \omega^{2}\right)^{2}+(c \omega)^{2}}{}\right.}\right)^{2} \cdot\left(\cos ^{2}(\omega t-\phi)+\left(\sin ^{2}(\omega t-\phi)\right.\right.}
\end{aligned}
$$

Noted $\cos ^{2}(\cos -\theta)+\sin ^{2}(\omega t-\theta)=1$

Example: A solid disk of weight (10Ib) is keyed to the center of a $(0.5 \mathrm{in})$ steel shaft $(2 \mathrm{ft})$ between bearing. Determine the lowest critical speed. (A sump shaft to be simply supported at the bearing).

$$
E_{5}=30 \times 10^{6} \mathrm{mb} / \mathrm{in}^{2} \text {, wite } 1 \mathrm{ft}
$$

solutions

$$
\begin{aligned}
R=0.5 \mathrm{in} \Rightarrow D & =2(0.5) \\
& =1 \mathrm{in}
\end{aligned}
$$

$$
\begin{aligned}
& \text { But } I=\frac{\pi D^{4}}{64} \\
& \Rightarrow k=\frac{3 \pi E D^{4}}{4 L^{3}}=\frac{3+\pi \times 30+10^{6}+(1)^{4}}{4 \times(2+12)^{3}}=5113.2 \\
& \omega_{n}=\sqrt{\frac{k}{m}}=\sqrt{\frac{3 \pi E D^{4}}{4 L^{3} \cdot m}}=22 \cdot 6 \mathrm{rad} / \mathrm{col} \text { Critical speed. }
\end{aligned}
$$

Hew// by using the equation of force of vibration of clamping system of whirling of rotation shaft Determme the equator af displacement and the critical frequency. Assume shaft to be Simply. Supported brain.

Chapter 4
The Systems with Two DOF
Introduction:
An N-Dof system will have N natural frequencies.
Each natural frequency has a natural state of vibration Called its normal mode
Eigenvalues and eigenvectors are related to the normal modes. Normal made vibrations are undamped free vibrations that depend only on the mass and stiffness distribution in the system.
(3) Damping limits amplitude and forces the free vibrations to decay.

- Number of DOF of the system equal to the Number of mass -es in the system multiply by Numb ber of position types of motion of each mass.

Two D.0.F

- Normal Mode Analysis:

$$
\begin{aligned}
& \underset{m \dot{x}}{\overrightarrow{\operatorname{AF}} x_{1}>x_{2}}=\overrightarrow{F_{x}}
\end{aligned}
$$

$$
\text { For }(m) \Rightarrow m \ddot{x}_{1}+k x_{1}+k\left(x_{1}-x_{2}\right)=0
$$

For $(2 m) \Rightarrow 2 m \ddot{x}_{2}-k\left(x_{1}-x_{2}\right)+k x_{2}=0$
Let $x_{1}=A_{1} \sin \omega t$ or $A_{1} e^{i \omega t}$

$\Rightarrow \quad \dot{x}_{1}=i A_{1} \omega e^{i \omega t}$

$$
\therefore x_{2}=i A_{2} e^{i \omega t}
$$

$$
\ddot{x}_{1}=-A_{1} \omega^{2} e^{i \omega t} \quad \ddot{x}_{2}=-A_{2} \omega^{2} e^{i \omega t}
$$

$\therefore \quad-m A_{1} \omega^{2} e^{i \omega t}+k A_{1} e^{i \omega t}+k A_{1} e^{j \omega t}-k A_{2} e^{i \omega t}=0$

$$
-2 m A_{2} \omega^{2} e^{i \omega t}-k A_{1} e^{i \omega t}+k A_{2} e^{i \omega t}+k A_{2} e^{i \omega t}=0
$$

$$
\Rightarrow \quad\left(-m A_{1} \omega^{2}+2 k A_{1}-k A_{2}\right) e^{i \omega t}=0
$$

$$
\left(-2 m A_{2} \omega^{2}-k A_{1}+2 k A_{2}\right) e^{i \omega t}=0
$$

$\Rightarrow \quad\left(-m \omega^{2}+2 k\right) A_{1}-k A_{2}=0$

$$
\begin{equation*}
-k A_{1}+\left(-2 m \omega^{2}+2 k\right) A_{2}=0 \tag{1}
\end{equation*}
$$

or $\left[\begin{array}{cc}2 k-m \omega^{2} & -k \\ -k & 2 k-2 m \omega^{2}\end{array}\right]\left[\begin{array}{l}A_{1} \\ A_{2}\end{array}\right]=0$

$$
\Rightarrow\left|\begin{array}{cc}
2 k-m w^{2} & -k \\
-k & 2 k-2 m \omega^{2}
\end{array}\right|=0
$$

If we let $\omega^{2}=\lambda$

$$
\Rightarrow\left|\begin{array}{cc}
2 k-\lambda m & -k \\
-k & 2 k-2 \lambda m
\end{array}\right|=0
$$

or. $(2 k-\lambda m)(2 k-2 \lambda m)-k^{2}=0$

$$
\begin{aligned}
& 4 k^{2}-4 k m \lambda-2 k m \lambda+2 \lambda^{2} m^{2}-k^{2}=0 \\
& 2 m^{2} \lambda^{2}-6 k m \lambda+3 k^{2}=0
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \lambda^{2}-\left(3 \frac{k}{m}\right) \lambda+\frac{3}{2}\left(\frac{k}{m}\right)^{2}=0 \\
& \quad \lambda_{1}, 2=\frac{3 \frac{k}{m} \pm \sqrt{9\left(\frac{k}{m}\right)^{2}-6\left(\frac{k}{m}\right)^{2}}}{2}=\left(\frac{3}{2} \pm \frac{\sqrt{3}}{2}\right) \frac{k}{m}
\end{aligned}
$$

$\therefore \lambda_{1}=0.634 \frac{k}{m} \quad$ الميمهُ
$\left.\lambda_{2}=2.366 \frac{\mathrm{k}}{\mathrm{k}}\right\}$ eigen value of the system.
$\left.\begin{array}{l}\omega_{1}=\sqrt{\lambda_{1}}=\sqrt{0.634 \mathrm{k} / \mathrm{m}} \\ \omega_{2}=\sqrt{\lambda_{2}}=\sqrt{2.366 \mathrm{k} / \mathrm{m}}\end{array}\right\}$ natural (frequencies of the syskm. From equations (1) and (2) we Can form the following relationship:

$$
\left(\frac{A_{1}}{A_{2}}\right)=\frac{k}{2 k-m \omega^{2}}=\frac{2 k-2 m \omega^{2}}{k}
$$

For $\omega_{1}:\left(\frac{A_{1}}{A_{2}}\right)^{(1)}=\frac{k}{2 K-m(0.634) \frac{k}{m}}=\frac{1}{2-0.634}=0.732$

$$
\text { For } w_{2}:\left(\frac{A_{1}}{A_{2}}\right)^{(2)}=\frac{k}{2 k-m(2.366) \frac{k}{m}}=\frac{1}{2-2.366}=-2.732
$$

AF one of the amplitudes is chosen $=1$, then the amplitude ratio are normalized. These are called the (normal modes) $\phi_{i}(x)$, or (mod escapes). for the system:

$$
\phi_{1}(x)=\left\{\begin{array}{c}
0.732 \\
1
\end{array}\right\} ; \phi_{2}(x)=\left\{\begin{array}{c}
-2.73 \\
1
\end{array}\right\}
$$

The normal mode are also the (eigen vectors) for the system, and the normal made oscillations are given by:

$$
\left.\left\{\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right\}^{(1)}=A_{1}\left\{\begin{array}{l}
0.732 \\
1.00
\end{array}\right\} \sin \left(\omega t+\phi_{1}\right) ;\left\{\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right\}=A .2 \begin{array}{c}
-2.73 \\
1.00
\end{array}\right\} \sin \left(\omega_{2} t+\phi_{2}\right\}
$$

The mode shapes can be represented graphicallyas fo:

- Initial Conditions:
- Once we know the modal frequencies and mede shapes, we an determine the free vibation of the system for any initial condit -ions as a sum of the normal modes:
\rightarrow From solution

$$
\begin{aligned}
& \omega_{2}=\sqrt{2.366 \frac{\mathrm{k}}{\mathrm{~m}}} ; \phi_{2}=\left\{\begin{array}{c}
-2.732 \\
1
\end{array}\right\}
\end{aligned}
$$

For free vibrations in either of the normal modes also eigenvectors $\left\{\begin{array}{l}x_{1} \\ x_{2}\end{array}\right\}^{(i)}=c_{i} \phi_{i} \sin \left(\omega_{i} t+\phi_{b_{i}}\right) ; i=1,2$.

Where: C_{i} and ϕ_{i} Come from initial Conditions
q: assures that the Correct amplitude ratio is maintained.
For initial conditions ingeneral, both modes are present:

$$
\left\{\begin{array}{c}
x_{1} \\
x_{2}
\end{array}\right\}=C_{1}\left\{\begin{array}{c}
0.732 \\
1
\end{array}\right\} \sin \left(\omega_{1} t+\phi_{0}\right)+C_{2}\left\{\begin{array}{c}
-2.732 \\
1
\end{array}\right\} \sin \left(\omega_{2} t+\phi_{7}\right)
$$

Note that there are four Constant and two equations. The four Constants are.
$C_{1}, C_{2} \Rightarrow$ define the contribution of each mode, and
$\$_{1}, \phi_{2} \Rightarrow$ describe the phase relation ships.
We can differentiate to get two more equations:

$$
\begin{aligned}
& \begin{array}{l}
\text { Engineering College } \\
\text { Mechanic Department } \\
\text { Fourth Stage }
\end{array} \\
& \left\{\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right\}=\left(v_{1} c_{1}\left\{\begin{array}{c}
0.732 \\
1
\end{array}\right\} \cos \left(\omega_{1} t+x_{1}\right)+\omega_{2} c_{2}\left\{\begin{array}{c}
-2.732 \\
1
\end{array}\right\} \cos \left(\omega_{2} t+\phi_{2}\right)\right.
\end{aligned}
$$

To solve the four equations, we can take at $t=0, x_{1}(0)=2$;

$$
\begin{aligned}
x_{2}(0) & =4 ; x_{1}(0)=0 ; x_{2}(0)=0 \\
\Rightarrow \quad 2 & =0.732 C_{1} \sin \phi_{1}-2.732 c_{2} \sin \phi_{2} \ldots(11 \\
4 & \left.=C_{1} \sin \phi_{1}+C_{2} \sin \phi_{2}\right] *(2.732) \\
10.928 & =2.732 C_{1} \sin \phi_{1}+2.732 C_{2} \sin \phi_{2} \ldots(2)
\end{aligned}
$$

add (1) and (2)

$$
\begin{equation*}
12.928=5.464 C_{1} \sin \phi_{1} \tag{*}
\end{equation*}
$$

and Sub the initial Caxplition in velocity equations.

$$
\Rightarrow \quad \begin{aligned}
0 & \left.=0.732 \omega_{1} C_{1} \cos \phi_{1}-2.732 \omega_{2} C_{2} \cos \phi_{2}-13\right) \\
0 & \left.=\omega_{1} c_{1} \cos \phi_{1}+\omega_{2} C_{2} \cos \phi_{2}\right]_{*}(2.732) \\
0 & =2.732 \omega_{1} c_{1} \cos \phi+2.732 \cos C_{2} \cos \phi_{1}-\ldots(4)
\end{aligned}
$$

add (3) and (4)
$0=3.4 \gamma_{4} \omega_{1} c_{1} \cos \phi_{1}$
$\Rightarrow \quad \operatorname{Cos} \phi_{1}=0 \Rightarrow \phi_{1}=\cos ^{-1} 0=90 \quad$ ANs $^{-1}$
sub. in (3) or ($40 \Rightarrow \alpha_{2}=90$ ant
Sub. in (*) $\Rightarrow 12.928=3.464 \mathrm{c}$

$$
\therefore \Rightarrow c_{1}=3.732
$$

sub. in (1) or (2) $\Rightarrow C_{2}=0.26787$

$$
\begin{aligned}
& \Rightarrow 0_{0}^{J}\left\{\begin{array}{c}
x_{1} \\
x_{2}
\end{array}\right\}=3.732\left\{\begin{array}{c}
0.732 \\
1
\end{array}\right\} \sin \left(\omega_{1} t+90\right)+0.26787\left\{\begin{array}{c}
-2.752 \\
1
\end{array}\right\} \sin (0.2 t+90) \\
& \Rightarrow\left\{\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right\}=3.732\left\{\begin{array}{c}
0.732\} \\
1
\end{array}\right\} \cos \sqrt{0.634 \frac{k}{m}}+0.26787\left\{\begin{array}{c}
-2.732 \\
1
\end{array}\right\} \cos \sqrt{2.566 \frac{k}{m} t} \text {. }
\end{aligned}
$$

Example: Find the natural frequencies and macle shapes of a spring-nuass system, shown in Figure below, which is constrained to move in the vertical direction only. And determine the free vibration of the system under the following initial condition, $x_{1}(0)=5 ; x_{2}(0)=0 ; x_{1}(0)=0 ; x_{2}(0)=0$, then take $n=1$.
solution:

$$
m \ddot{x}^{3}=\Sigma F t
$$

For $\left(m_{1}\right): m \ddot{x}_{1}=-k\left(x_{1}-x_{2}\right)-k x_{1}$
\Rightarrow

$$
m \ddot{x}_{1}+2 k x_{1}-k x_{2}=0
$$

For ($n-w_{2}$: $\quad m_{1} \ddot{x}_{2}=k\left(x_{1}-x_{2}\right)-k x_{2}$
$\Rightarrow \quad m \ddot{x}_{2}+2 k x_{2}-k x_{1}=0$
Let $x_{1}=A e^{j \omega t}, \quad x_{2}=B e^{j \omega t}$

$$
\begin{aligned}
& {\left[\begin{array}{cc}
2 k-m \omega^{2} & k \\
-k & 2 k-m \omega^{2}
\end{array}\right]\left[\begin{array}{l}
A \\
B
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \quad\left[\begin{array}{c}
4 \\
m \\
2 k-m k w^{2}
\end{array} \quad-k\right.} \\
& -k \quad 2 k-m \omega^{2} \mid=0
\end{aligned}
$$

$$
m^{2} w^{4}-4 k m \omega^{2}+3 k^{2}=0
$$

$\Rightarrow w_{1}^{2}=\left.\frac{k}{m} \Rightarrow \frac{A}{B}\right|_{1}=1$ and $\omega_{2}^{2}=\left.\frac{3 k}{m} \Rightarrow \frac{A}{B}\right|_{2}=-1$
(4 under initial conditions

$$
\begin{aligned}
& x_{1}(t)=A \sin \left(\omega_{1} t+\phi_{1}\right)-B \sin \left(\omega_{2} t+\phi_{2}\right) \\
& x_{2}(t)=A \sin \left(\omega_{1} t+\phi_{1}\right)+B \sin \left(\omega_{2} t+\phi_{2}\right)
\end{aligned}
$$

$$
I \cdot C \cdot S=x_{1}(0)=5 \Rightarrow 5 \Rightarrow A \sin \phi_{1}-B \sin \phi_{2}
$$

$$
\begin{equation*}
x_{2}(0)=0 \Rightarrow 0=A \sin \phi_{1}+B \sin \phi_{2} \tag{2}
\end{equation*}
$$

$$
\begin{align*}
& x_{1}^{\prime}(0)=0 \Rightarrow 0=\omega_{1} A \cos \phi_{1}-B \omega_{2} \cos \phi_{2} \tag{5}\\
& \left.x_{2}(0)=0 \Rightarrow 0=\omega_{1} A \cos \phi_{1}+B\right)_{2} \cos \phi_{1}
\end{align*}
$$

$I \mp=\left(\frac{A_{1}}{A_{2}}\right.$) (Normal nader)

After solution we find,

$$
\phi_{1}=\phi_{2}=90
$$

and $A=2.5$

$$
B=-2.5
$$

$\therefore \quad x_{1}(t)=2.5 \sin \left(\sqrt{\frac{k}{m}} t+90\right)+2.5 \sin \left(\sqrt{\frac{3 k}{m}} t+90\right)$

$$
x_{2}(t)=2.5 \sin \left(\sqrt{\frac{k}{m}} t+90\right)-2.5 \sin \left(\sqrt{\frac{3 k}{m}} t+90\right)
$$

$\Rightarrow o r_{0}$

$$
\left\{\begin{array}{l}
x_{1}(t) \\
x_{2}(f)
\end{array}\right\}=2.5\left[\begin{array}{l}
1 \\
1
\end{array}\right\} \cos \sqrt{\frac{k}{m}} t-2.5\left[\left[_{1}^{-1}\right] \cos \sqrt{\frac{3 k}{m}} t\right.
$$

First mode second mode $\sqrt{-1 / m 2}$

Arz Y. Rzayeg

Exumple: Determin the equation of mution and the naturel Srequencies ind mui shepes of the two degree of fireedom syikin is - liown below.
solution.

$$
\Sigma M=I \ddot{\theta}
$$

Let $I=m L^{2}, \sin \theta=\theta$

$$
\begin{aligned}
& \Rightarrow \quad m L^{2} \ddot{\theta}_{1}=-m g L \theta_{1}-k a\left(\theta_{1}-\theta_{2}\right) \cdot a \\
& m L^{2} \ddot{\theta}_{2} \\
&=-m g L \theta_{2}+k a\left(\theta_{1}-\theta_{2}\right) \cdot a
\end{aligned}
$$

let $\theta_{1}=A_{1} \cos \omega t \Rightarrow \ddot{\theta_{1}}=-A_{1} \omega^{2} \cos \omega t$

$\theta_{2}=A_{2} \cos \omega t \Rightarrow \hat{\theta}_{2}=-A_{2} \omega^{2} \cos \omega t$. мими миши

$$
\begin{aligned}
& \Rightarrow-m L^{2} \omega^{2} A_{1}+m g L A_{1}+k a^{2} A_{1}-k a^{2} A_{2}=0 \\
& \Rightarrow\left(k a^{2}+n g L-m L^{2} \omega^{2}\right) A_{1}-k a^{2} A_{2}=0-(1)
\end{aligned}
$$

$$
\text { and }-\frac{m L^{2} w^{2} A}{2}+m g L A_{2}+k a^{2} A_{2}-k a^{2} A_{1}=0
$$

$$
\Rightarrow-k a^{2} A_{1}+\left(k a^{2}+m g l-m l^{2} \omega^{2}\right) A_{2}=0
$$

$$
k a^{2}+m g L-m L^{2} \omega^{2} \quad-k a^{2}
$$

$$
-k a^{2} \quad k a^{2}+m g l-m l^{2} v v^{2}=0
$$

$$
\Rightarrow k^{2} a^{4}+k a^{2} m g L-\frac{k a^{2} m L^{2} w^{2}}{23}+\frac{m g L k a^{2}}{4}+m^{2} g^{2} L^{2}-m^{2} g L^{3} w^{2}-
$$

$$
m l^{2} \omega^{2} k a^{2}-\frac{m^{2} g q^{3} \omega^{2}+m^{2} l^{4} w^{4}-x^{2} a^{4}=0}{T}
$$

$$
\Rightarrow 2 k a^{2} m g L-2 k a^{2} m L^{2} \omega^{2}+m^{2} g^{2} L^{2}-2 m^{2} L^{3} \omega^{2}+m^{2} L^{4} \omega^{4}=0
$$

$$
\Rightarrow m^{2} L^{4} \omega^{4}-\left(2 k a^{2} m L+2 m^{2} 1^{3}\right) \omega^{2}+\left(2 k a^{2} m g L+m^{2} g^{2} L^{2}\right)=0
$$

let $\lambda=\omega^{2}$

$$
\left[\begin{array}{l}
\quad \lambda^{2}-\left(\frac{2 k a^{2} m L^{2}}{m^{2} L^{4}}+\frac{2 m^{2} g L^{3}}{m^{2} L^{4}}\right) \lambda+\left(\frac{2 k a^{2} m g L}{m^{2} L 4}+\frac{m^{2} g^{2} L^{2}}{m^{2} L^{4}}\right)=0 \\
\cdots
\end{array} \quad \begin{array}{ll}
& \frac{2 k a^{2} m L^{2}}{m^{2} L^{4}}+\frac{2 m^{2} g L^{3}}{m^{2} L^{4}} \mp \sqrt{\left(\frac{2 k a^{2} m L^{2}}{m^{2} L^{4}}+\frac{2 m^{2} g L^{3}}{m^{2} L^{4}}\right)^{2}-4\left(\frac{2 k a^{2} m g L}{m^{2} L^{2}}+\frac{m^{2} g^{2} L^{2}}{m^{2} L^{4}}\right)} \\
2
\end{array}\right.
$$

$\leftrightarrow \lambda_{1}, 2=$

$$
=\frac{k a^{2}}{m L^{2}}+\frac{g}{L} \mp \frac{1}{2} \sqrt{\frac{4 k^{2} a^{4}}{m^{2} L^{4}}+\frac{8 g a^{2} k}{m L^{3}}+\frac{4 g^{7}}{L^{2}}-\frac{8 k a^{2} g}{m L^{3}}-\frac{4 g^{2}}{L^{2}}}
$$

$$
=\frac{K a^{2}}{m L^{2}}+\frac{g}{l} \mp \frac{K a^{2}}{m L^{2}}
$$

$\therefore \lambda_{1}=\frac{g}{L} \quad$ and $\quad \lambda_{2}=\frac{g}{L}+2 \frac{k a^{2}}{m L^{2}}$

$$
\therefore w_{1}=\sqrt{\frac{9}{L}} \quad, w_{2}=\sqrt{\frac{9}{L}+2 \frac{k a^{2}}{m L^{2}}}
$$

\therefore From equations (1) and (2) we obtained fo

$$
\left.\begin{array}{ll}
\left(\frac{A_{1}}{A_{2}}\right)^{(1)}=1.0 & ;\left(\frac{A_{1}}{A_{2}}\right)^{2}=-1.0 \\
\therefore \psi_{1}=\{1.0 \\
1.0
\end{array}\right\} ; U_{2}=\left\{\begin{array}{c}
-1.0 \\
1.0
\end{array}\right\}
$$

\Rightarrow The normal made oscillations are given by:

$$
\left\{\begin{array}{l}
\left.\theta_{1}\right\}_{2}^{\prime \prime}
\end{array}\right\}^{\prime \prime}=A_{1}\left\{\begin{array}{l}
1.0 \\
1.0
\end{array}\right\} \cos \left(\omega t+\phi_{1}\right) \text { and }\left\{\begin{array}{c}
\theta_{1}(2) \\
\theta_{2}
\end{array}\right\}=A_{2}\left\{\begin{array}{c}
-1.0 \\
1.0
\end{array}\right\} \cos \left(\omega t+\phi_{2}\right)
$$

Example: Determine the differential equations for the torsional system will two degree of fredom as show in below. solution:

$$
\begin{aligned}
& \text { For } \theta_{2}>\theta_{1} \\
& \Rightarrow \quad I_{1} \hat{\theta}_{1}=-k_{1} \theta_{1}+k_{2}\left(\theta_{2}-\theta_{1}\right) \\
& \quad I_{2} \ddot{\theta}_{2}=-k_{2}\left(\theta_{2}-\theta_{1}\right)-k_{3} \theta_{2}
\end{aligned}
$$

$$
\Rightarrow \quad \ddot{\theta}_{1}+\frac{k_{1}+k_{2}}{I_{1}} \theta_{1}-\frac{k_{2}}{I_{1}} \theta_{2}=0
$$

$$
\ddot{\theta}_{2}+\frac{k_{2}+k_{3}}{I_{2}} \theta_{2}-\frac{k_{2}}{I_{2}} \theta_{1}=0
$$

Let $\theta_{1}=\theta_{1} \sin \omega t, \theta_{1}=-\theta_{1} \omega^{2} \sin \omega t$

$\theta_{2}=Q_{2} \sin \omega t ; \ddot{\theta}_{2}=-\theta_{2} \omega^{2} \sin \omega t$

$$
\begin{aligned}
\Rightarrow & -\theta_{1} \omega^{2}+\left(k_{1}+k_{2}\right) / I_{1} \theta_{1}-\frac{k_{2}}{I_{1}} \theta_{2}=0 \\
& -\left(\theta_{2} \omega^{2}+\left(k_{2}+k_{3}\right) / I_{2} \theta_{2}-k_{2} \theta_{1}=0\right. \\
\Rightarrow & {\left[\left(k_{1}+k_{2}\right) / I_{1}-\omega^{2}\right] \theta_{1}-k_{2} \theta_{2}=0 } \\
& \left.-k_{2} \theta_{1}+\left[k_{2}+k_{3}\right) / I_{2} \omega^{2}\right] \theta_{2}=0 \\
\Rightarrow & -k_{2} / I_{1} \\
\left(k_{1}+k_{2}\right) I_{1}-\omega_{1}^{2} \quad & \quad k_{2} / I_{2} \quad\left(k_{2}+k_{3}\right) / I_{2}-\omega^{2} \mid=0
\end{aligned}
$$

H.w: Determine the eigenvector of this system:

Two DoF system Effected by forces.
The system shown below when m is exited by the force Fisinwt. plot it's frequency response curve. Assume $m=m_{1}=m_{2}$. solution. br assuming $M_{1}=m_{2}$ Σ equation of motion.

$$
\text { For }\left(m_{1}\right): \overrightarrow{m \vec{x}_{1}^{2}}=\overrightarrow{\Sigma \vec{F}}
$$

$$
m \ddot{x}_{1}^{\dot{\theta}}=F_{1} \sin u t-k x_{1}-k\left(x_{1} \cdots x_{2}\right)
$$

$$
m \dot{c}_{1}+2 k x_{1}-k x_{2}=F_{1} \sin \omega t
$$

Assume harmonic motion $\left(\left[\begin{array}{c}x_{1}^{0} \\ x_{i}^{0}\end{array}\right]=\left[\frac{X_{1}}{X_{2}}\right] \sin \omega, t+-\omega^{2}\right)-0$

$$
\begin{aligned}
& {\left[\begin{array}{cc}
-m w^{2} & 0 \\
0 & m \omega^{2}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x 2
\end{array}\right]+\left[\begin{array}{cc}
2 k & -k \\
-k & 2 k
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
F_{1} \\
0
\end{array}\right] \sin \omega t} \\
& {\left[\begin{array}{cc}
2 k-m \omega^{2} & -k \\
-k & 2 k-m \omega^{2}
\end{array}\right]\left[\begin{array}{l}
I_{1} \\
X_{2}
\end{array}\right]=\left[\begin{array}{c}
F_{1} \\
0
\end{array}\right] \quad \cdots *} \\
& {[z(\omega)]\left[\begin{array}{l}
I_{1} \\
X_{2}
\end{array}\right]=\left[\begin{array}{l}
F_{1} \\
0
\end{array}\right] \Rightarrow\left[\begin{array}{l}
I_{1} \\
I_{2}
\end{array}\right]=[z(\omega)]^{-1}\left[\begin{array}{l}
F_{1} \\
0
\end{array}\right]=\frac{a d j[z(\omega)]}{|z(\omega)|}\left[\begin{array}{c}
F_{1} \\
0
\end{array}\right]} \\
& 0^{\circ}\left[\begin{array}{l}
z(\omega)
\end{array}\right]=\left|\begin{array}{cc}
2 k-m \omega^{z} & -k \\
-k & 2 k-m \omega^{2}
\end{array}\right|\left[\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right]=\left[\begin{array}{l}
F_{1} \\
0
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \text { Fir }\left(m_{2}\right): \overrightarrow{m x_{2}}=\overrightarrow{S F}=\dot{k}\left(x_{1}-x_{2}\right)-k x_{2} \\
& m \dddot{x}_{2}+2 k x_{2}-k x_{1}=0 \\
& \left.\left[\begin{array}{l}
x_{1} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
x_{1} \\
x_{2}-
\end{array}\right]-\sin \omega t\right) \rightarrow(
\end{aligned}
$$

 FGost
(1) $\left.\left\lvert\, \begin{array}{l}x_{1} \\ x_{2}\end{array}\right.\right]=\frac{\operatorname{adj}[z(w)] \cdot\left[\left.\begin{array}{l}F_{1} \\ F_{2}\end{array} \right\rvert\,\right.}{|z(w)|}$
(1) $\left\{[Z(\omega)]=\left|\begin{array}{cc}2 k-m \omega^{2} & -k \\ -k & 2 k-m \omega^{2}\end{array}\right|\left[\begin{array}{l}X_{1} \\ X_{2}\end{array}\right]=\left[\begin{array}{c}F \\ 0\end{array}\right] \quad \begin{array}{l}\text { isies } \\ 1\end{array}\right.$
(2)
$|z(\omega)|=\left(2 k-m \omega^{2}\right)^{2}-k^{2}=\left(\left(2 k-m \omega^{2}\right)-k\right)\left(\left(2 k-m \omega^{2}\right)+k\right)$
$|z(\omega)|=\left(k-m \omega^{2}\right)$

$$
\therefore(z(w))=m^{2}\left(w_{1}^{2}-w^{2}\right)\left(\omega_{c}^{2}-\omega^{2}\right)
$$

(3) $\underset{\text { adjoint }}{\operatorname{ad}} \underset{\text { ad }}{ } \mathrm{L}[z(\omega)]=\left[\begin{array}{cc}2 k-m \omega^{2} & k \\ k & 2 k-m w^{2}\end{array}\right]$.
$\stackrel{0}{0}$
๔

$$
\left[\begin{array}{l}
X_{1} \\
\bar{X}_{2}
\end{array}\right]=\frac{\left.\left\lvert\, \begin{array}{cc}
2 k-m \omega^{2} & k \\
k & 2 k-m \omega^{2}
\end{array}\right.\right)\left[\begin{array}{c}
F_{1} \\
0
\end{array}\right]}{m_{k}^{2}\left(\omega_{1}^{2}-\omega^{2}\right)\left(\omega_{2}^{2}-\omega^{2}\right)}
$$

(5) $0:$

$$
\begin{aligned}
X_{1} & =\frac{\left|\begin{array}{c}
F_{1} k \\
0 \cdots 2 k-m w^{2} \mid
\end{array}\right|}{m^{2}\left(w_{1}^{2}-w^{2}\right)\left(w_{2}^{2}-w^{2}\right)} \cdots
\end{aligned} \quad \Rightarrow X_{1}=\frac{\left(2 k-m w^{2}\right) \cdot F_{1}}{m^{2}\left(w^{2}-w^{2}\right)\left(w_{2}^{2}-w^{2}\right.},
$$

Az Y. Rzayeg
$O R$, by another mothered
From equation $\left({ }^{*}\right)$; put $F_{1}=0$ 心 find $\omega_{1}, 2$

$$
\Rightarrow\left|\begin{array}{cc}
2 k-m \omega^{2} & -k \\
-k & 2 k-m w^{2}
\end{array}\right|=0
$$

Assume $\lambda=00^{2}$

$$
\begin{aligned}
& \Rightarrow\left|\begin{array}{cc}
2 k-m \lambda-k \\
-k & -k-m \lambda
\end{array}\right|=0 \\
& \Rightarrow 4 k^{2}-2 m \lambda k+m^{2} \lambda^{2}-k^{2}=0 \Rightarrow \lambda^{2}-4\left(\frac{k}{m}\right) \lambda+3\left(\frac{k}{m}\right)^{2}=0 \\
& \therefore \lambda_{1,2}=\frac{4\left(\frac{k}{m}\right) \pm \sqrt{16\left(\frac{k}{m}\right)^{2}-12\left(\frac{k}{m}\right)^{2}}}{2} \Rightarrow \lambda_{192}=(2 \pm 1) \frac{k}{m}
\end{aligned}
$$

$$
\Rightarrow \therefore \lambda_{1}=\frac{k}{m}=\omega_{1}^{2} \quad ; \text { and } \lambda_{2}=\frac{3 k}{m}=\omega_{2}^{2}
$$

From equation $(*)$ obtained to;

$$
\begin{align*}
& \left(2 k-m w^{2}\right) X_{1}-k \bar{I}_{2}=F_{1} \tag{1}\\
& \left(2 k-m w^{2}\right) I_{2}-k X_{1}=0 \tag{2}
\end{align*}
$$

From equation (2)

$$
\begin{equation*}
\left(2 k-m w^{2}\right) \bar{X}_{2}=k \bar{X}_{1} \Rightarrow \bar{X}_{2}=\frac{k X_{1}}{\left(2 k-m w^{2}\right)} \tag{3}
\end{equation*}
$$

sub.in (1)

$$
\begin{aligned}
& \left(2 k-m w^{2}\right) \hat{X}_{1}-\frac{k^{2} \bar{X}_{1}}{\left(2 k-m w^{2}\right)}=F_{1} \\
& \frac{\left(2 k-m w^{2}\right)^{2} \bar{X}_{1}-k^{2} \underline{X}_{1}}{\left(2 k-m w^{2}\right)}=F_{1} \\
& {\left[\left(2 k-m w^{2}\right)^{2}-k^{2}\right] \bar{X}_{1}=F_{1}\left(2 k-m w^{2}\right)}
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow \bar{X}_{1} & =\frac{\left(2 k-m w^{2}\right) F_{1}}{\left(2 k-m w^{2}-k\right)\left(2 k-m w^{2}+k\right)} \\
& =\frac{m F_{1}\left(2 \frac{k}{m}-w^{2}\right)}{m^{2}\left(\frac{k}{m}-w^{2}\right)\left(\frac{3 k}{m}-w^{2}\right)}=\frac{m F_{1}\left(2 w_{2}-w^{2}\right)}{n^{2}\left(\omega_{1}^{2}-\omega^{2}\right)\left(\omega_{2}^{2}-\omega^{2}\right)}
\end{aligned}
$$

becouse m obtained from equation (2) $\Rightarrow m=m_{2}$ sub I, in equation (3)

$$
\begin{aligned}
\therefore \bar{X}_{2} & =\frac{k}{\left(2 k-w_{1} \omega^{2}\right)} * \frac{\left(2 k-m w_{2}^{2}\right) F_{1}}{\left(2 k-m w^{2}-k\right)\left(2 v-v v^{2}+k\right)} \\
& =\frac{k F_{1}}{\left(2 k-m w^{2}-k\right)\left(2 k-m w^{2}+k\right)} \\
& =\frac{k F_{1}}{m^{2}\left(\omega_{1}^{2}-\omega^{2}\right)\left(\omega_{2}^{2}-\omega^{2}\right)}
\end{aligned}
$$

How: AF replace the force by Flo cos wt far the same system. Find the response.

TWO D.O.F with Damping

Example: Consider the following spring and mass system:

Undamped

For a system where the damping is negligible, we can apply Newton's second law to a free body diagram of the blocks and get the following for mass 1:

$$
m_{1} \dot{x}_{1}+\left(k_{1}+k_{2}\right) x_{1}-k_{2} x_{2}=0,
$$

and this for mass 2:

$$
m_{2} \ddot{x}_{2}+k_{2} x_{2}-k_{2} x_{1}=0
$$

where k_{1} and k_{2} are the spring constants, m_{1} and m_{2} are the masses of the blocks, and x_{1} and x_{2} are the displacements from equilibrium of each block.

Damped

The above is a special case of the more general case of a damped system. For a damped system, the free body diagrams and Netwon's second law yield:
for mass 1 :

$$
m_{1} \ddot{x}_{1}+c_{1} \dot{x}_{1}+c_{2}\left(\dot{x}_{1}-\dot{x}_{2}\right)+k_{1} x_{1}+k_{2}\left(\dot{x}_{1}-x_{2}\right)=0,
$$

and this for mass 2:

$$
m_{2} \ddot{x}_{2}+c_{2}\left(\dot{x}_{2}-\dot{x}_{1}\right)+k_{2}\left(x_{2}-x_{1}\right)=0
$$

This equation assumes that the vibrations are damped by the dashpots shown between the blocks and the wall. No external force is acting on the system. This system of two second order ordinary differential equations can be written in matrix form as:

$$
M \ddot{x}+C \dot{x}+K x=0
$$

where M represents the mass matrix:

$$
M=\left[\begin{array}{cc}
m_{1} & 0 \\
0 & m_{2}
\end{array}\right]
$$

and C represents the damping matrix

$$
C=\left[\begin{array}{cc}
c_{1}+c_{2} & -c_{2} \\
-c_{2} & c_{2}
\end{array}\right]
$$

and K represents the stiffness matrix

$$
K=\left[\begin{array}{cc}
k_{1}+k_{2} & -k_{2} \\
-k_{2} & k_{2}
\end{array}\right]
$$

The acceleration, velocity, and displacement are given by the following three matrices, respectively:

$$
\ddot{x}=\left[\begin{array}{l}
\ddot{x}_{1} \\
\ddot{x}_{2}
\end{array}\right] \quad \dot{x}=\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right] \quad x=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

The solution to this system of ODEs has the general form:

$$
x(t)=X e^{s t}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] e^{s t}
$$

For the case under consideration in the above simulation, which is the underdamped case, the solution is given by the following two equations:
$x_{1}(t)=A_{1.1} e^{-\xi_{1} \omega_{1} t} \cos \left(\omega_{1 d} t\right)+A_{1.2} e^{-\xi_{2}\left(\omega_{2} t\right.} \cos \left(\omega_{2 d} t\right)$
and

$$
x_{2}(t)=A_{2.1} e^{-\xi_{1} \omega_{1} t} \cos \left(\omega_{1 d} t\right)+A_{2.2} e^{-\xi_{2} \omega_{2} t} \cos \left(\omega_{2 d} t\right)
$$

where the damping factor is defined as

$$
\xi=c / C_{c}
$$

4

and the damped natural frequency is defined as

$$
\omega_{, j}=\omega \sqrt{1-\xi^{2}}
$$

Note that ω_{1} and ω_{2} represent the first and second natural frequencies of the system and are related to the two modal vibrations that combine to provide the overall motion of the system. They are not related to the ratio of a single spring constant and mass as in a single degree of freedom system. This means that

$$
\omega_{1} \neq \sqrt{\frac{k_{1}}{m_{1}}}
$$

and

$$
\omega_{2} \neq \sqrt{\frac{k_{2}}{m_{2}}}
$$

The natural frequencies, in rad $/ \mathrm{sec}$, of the two degree of freedom system, ω_{1} and ω_{2}, are proportional the eigenvalues of the stiffness and mass matrices and are given by:

$$
\omega_{1}=\sqrt{\lambda(1,1)} \quad \text { and } \quad \omega_{2}=\sqrt{\lambda(2,2)}
$$

where λ represents the eigenvalue function. Recall that the eigenvalue is defined such that:

$$
|\vec{K}-\lambda \vec{M}|=0
$$

Solving for the eigenvalues will thus provide us with the natural frequencies of the system. In order to find the relative amplitudes of the masses vibrations, it is also necessary to find the eigenvector matrices. Note that by setting $A_{1,1}=1$ and $A_{2.1}=1$, future calculations can be simplified while still maintaining the correct calculations-the concern here is with the relative amplitude of the vibration.

Recall that an eigenvector A is defined such that:

$$
|\vec{K}-\lambda \vec{M}| \cdot[A]=0
$$

The eigenvectors are given by

$$
\vec{A}_{1}=\left[\begin{array}{c}
1 \\
A_{1.2}
\end{array}\right] \quad \text { and } \quad \vec{A}_{2}=\left[\begin{array}{c}
1 \\
A_{2.2}
\end{array}\right]
$$

For a two degree of freedom system, given the mass and stiffness matrices above, the eigenvector calculations are fairly simple:

$$
A_{i .2}=\frac{\left(k_{1}+k_{2}\right)-\omega_{1}^{2} m_{1}}{k_{2}}
$$

At this point, then, define two functions $p_{1}(t)$ and $p_{2}(t)$, and a composite matrix (I) as follows:

$$
\begin{aligned}
& \vec{\Phi}=\left[\begin{array}{cc}
1 & 1 \\
A_{1,2} & A_{2,2}
\end{array}\right] \\
& p_{1}(t)=p_{10} e^{-5_{1} \omega_{1} t} \cos \left(\omega_{1 d} t\right) \\
& p_{2}(t)=p_{20} e^{-5_{2}\left(\omega_{2} 2 t\right.} \cos \left(\omega_{2 d} t\right)
\end{aligned}
$$

$p_{1}(t)$ represents the first modal motion of the system.
$p_{2}(t)$ represents the second modal motion of the system
From our earlier equations for equations for x, it is clear that:

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\vec{\Phi}\left[\begin{array}{l}
p_{1}(t) \\
p_{2}(t)
\end{array}\right]
$$

The initial conditions, then will provide us with p10 and p20, which are the last pieces of the displacement function. Calculating the inverse of F and multiplying it by the column matrix $\times 10, \times 20$ will give us those values. Then the complete displacement x as a function of time t is given by:

$$
\begin{aligned}
& x_{1}(t)=p_{1}(t)+p_{2}(t) \\
& x_{2}(t)=A_{1,2} p_{1}(t)+A_{2,2} p_{2}(t)
\end{aligned}
$$

Chapter Six
Multi Degree of Freedom

- Flexibility and Stiffness Matrix:

Flexibility influence coefficient $\left(a_{i j}\right)$
is the displacement at (i) due to a unit forceat (j).

$$
\begin{aligned}
& \left.\begin{array}{l}
x_{1}=a_{11} f_{1}+a_{12} f_{2}+a_{13} f_{3} \\
x_{2}=a_{21} f_{1}+a_{22} f_{2}+a_{23} f_{3} \\
x_{3}=a_{31} f_{11}+a_{32} f_{2}+a_{33} f_{3}
\end{array}\right\} \Rightarrow\{x\}=[a]\{f\} \\
& \{x\}=\left\{\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right\} ;\{f\}=\left\{\begin{array}{l}
f_{1} \\
f_{2} \\
f_{3}
\end{array}\right\} \text { and; } \\
& {[a]=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] \Rightarrow \text { flexibility matrix. }} \\
& \{x\}=[a]\{f\} \Rightarrow[a]^{-1}\{x\}=\{f\} \Rightarrow[k]\{x\}=\{f\}
\end{aligned}
$$

Where; $[k]=[a]^{-1}$ or; $[a]=[k]^{-1}$

$$
[k]=\left[\begin{array}{lll}
k_{11} & k_{12} & k_{13} \\
k_{21} & k_{22} & k_{23} \\
k_{31} & k_{32} & k_{33}
\end{array}\right] \text {...s stiffness matrix. }
$$

* Reciprocity Theorem, $a_{i j}=a_{j i}$

$$
k_{i j}=k_{j j i}
$$

MODAL DAMPING:-

Example : Consider the 3 degree-of-freedom system,

Solution:

There are 3 degrees of freedom in this problem since to fully characterize the system we must know the positions of the three masses ($\mathrm{x}_{1}, \mathrm{x}_{2}$, and x 3).

Three free body diagrams are needed to form the equations of motion. However, it_ is also possible to form the coefficient matrices directly, since each parameter in a mass-dashpot-spring system has a very distinguishable role.

The equations of motion can be obtained from free body diagrams, based on the Newton's second law of motion, $\mathrm{F}=\mathrm{m}^{*} \mathrm{a}$.

The equations of motion can therefore be expressed as,

$$
\begin{aligned}
& m_{1} \ddot{x}_{1}+c_{v 1} \dot{x}_{1}+\left(k_{1}+k_{2}+k_{4}\right) x_{1}-k_{2} x_{2}-k_{4} x_{3}=j_{1}(t) \\
& m_{2} \ddot{x}_{2}+c_{v 2} \dot{x}_{2}-c_{v 2} \dot{x}_{3}+\left(k_{2}+k_{3}\right) x_{2}-k_{2} x_{1}-k_{3} x_{3}=f_{2}(i) \\
& m_{3} \ddot{x}_{3}+c_{v 2} \dot{x}_{3}-c_{v 2} \dot{x}_{2}+\left(k_{3}+k_{4}\right) x_{3}-k_{3} x_{2}-k_{4} x_{1}=f_{1}(i)
\end{aligned}
$$

In matrix form the equations become,

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
m_{1} & 0 & 0 \\
0 & m_{2} & 0 \\
0 & 0 & m_{3}
\end{array}\right]\left[\begin{array}{l}
\ddot{x}_{1} \\
\ddot{x}_{2} \\
\ddot{x}_{3}
\end{array}\right]+\left[\begin{array}{ccc}
c_{v 1} & 0 & 0 \\
0 & c_{v 2} & -c_{v 2} \\
0 & -c_{v 2} & c_{v 2}
\end{array}\right]\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3}
\end{array}\right]+} \\
& {\left[\begin{array}{ccc}
k_{1}+k_{2}+k_{4} & -k_{2} & -k_{4} \\
-k_{2} & k_{2}+k_{3} & -k_{3} \\
-k_{4} & -k_{3} & k_{3}+k_{4}
\end{array}\right]\left[\begin{array}{l}
\dot{x}_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
f_{1}(t) \\
f_{2}(t) \\
f_{3}(t)
\end{array}\right]}
\end{aligned}
$$

Noted If Free vibration $f_{1}(t)=0 \quad f_{2}(t)=0 \quad f_{3}(t)=0$

